To identify more targets in soybean, particularly specific targets of Cd-stress-responsive miRNAs, high-throughput degradome sequencing was used. In total, we obtained 8913111 raw reads from the library which was constructed from a mixture of four samples (HX3-CK, HX3-Cd-treatment, ZH24-CK and ZH24-Cd-treatment). After removing the reads without the CAGAG adaptor, 5430126 unique raw-reads were obtained. The unique sequences were aligned to the G. max genome database, and 6516276 reads were mapped to the genome. The mapped reads from the libraries represented 51481 annotated G. max genes. Overall design: Identification of miRNA targerts in soybean roots
Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes.
Specimen part, Subject
View SamplesKnock-down of LSD1 using siRNA approach induced regulation of several proliferation-associated genes in ER-negative breast cancer cells MDA-MB-231.
Lysine-specific demethylase 1 (LSD1) and histone deacetylase 1 (HDAC1) synergistically repress proinflammatory cytokines and classical complement pathway components.
Cell line
View SamplesHere we provide fundamental insights into early human development by single-cell RNA-sequencing of human and mouse preimplantation embryos. We elucidate conserved transcriptional programs along with those that are human-specific. Importantly, we validate our RNA-sequencing findings at the protein level, which further reveals differences in human and mouse embryo gene expression. For example, we identify several genes exclusively expressed in the human pluripotent epiblast including the transcription factor KLF17. Key components of the TGF-ß signaling pathway including NODAL, GDF3, TGFBR1/ALK5, LEFTY1, SMAD2, SMAD4 and TDGF1 are also enriched in the human epiblast. Intriguingly, inhibition of TGF-ß signaling abrogates NANOG expression in human epiblast cells, consistent with a requirement for this pathway in pluripotency. Although key trophectoderm factors Id2, Elf5, and Eomes are exclusively localized to this lineage in the mouse, the human orthologues are either absent or expressed in alternative lineages. Importantly, we also identify genes with conserved expression dynamics including Foxa2/FOXA2, which we show is restricted to the primitive endoderm in both human and mouse embryos. Comparisons of the human epiblast to existing embryonic stem cells (hESCs) reveals conservation of pluripotency but also additional pathways more enriched in hESCs. Our analysis highlights significant differences in human preimplantation development compared to mouse and provides a molecular blueprint to understand human embryogenesis and its relationship to stem cells. Overall design: Single-Cell RNA-seq
Defining the three cell lineages of the human blastocyst by single-cell RNA-seq.
No sample metadata fields
View SamplesProtein-RNA interactions are integral components of nearly every aspect of biology including regulation of gene expression, assembly of cellular architectures, and pathogenesis of human diseases. However, studies in the past few decades have only uncovered a small fraction of the vast landscape of the protein-RNA interactome in any organism, and even less is known about the dynamics of protein-RNA interactions under changing developmental and environmental conditions. Here, we describe the gPAR-CLIP (global photoactivatable-ribonucleoside-enhanced crosslinking and immunopurification) approach for capturing regions of the transcriptome bound by RNA-binding proteins (RBPs) in budding yeast. We report over 13,000 RBP crosslinking sites in untranslated regions (UTR) covering 72% of protein-coding transcripts encoded in the genome, confirming 3' UTRs as major sites for RBP interaction. Comparative genomic analyses reveal that RBP crosslinking sites are highly conserved, and RNA folding predictions indicate that secondary structural elements are constrained by protein binding and may serve as generalizable modes of RNA recognition. Finally, 38% of 3' UTR crosslinking sites show changes in RBP occupancy upon glucose or nitrogen deprivation, with major impacts on metabolic pathways as well as mitochondrial and ribosomal gene expression. Our study offers an unprecedented view of the pervasiveness and dynamics of protein-RNA interactions in vivo. Overall design: Duplicate gPAR-CLIP and mRNA-seq libraries were sequenced from yeast strains for each of three conditions: log-phase growth, growth after 2 hour glucose starvation, and growth after 2 hour nitrogen starvation. Additional duplicate mRNA-seq libraries were sequenced from yeast strains grown in the absence of 4-thiouracil. gPAR-CLIP libraries were used to determine regions of mRNA bound by proteins. mRNA-seq libraries served as controls for mRNA abundance. A Puf3p PAR-CLIP library was sequenced to determine how well gPAR-CLIP captured the binding signatures of a single RNA-binding protein.
RNA promotes phase separation of glycolysis enzymes into yeast G bodies in hypoxia.
Cell line, Treatment, Subject
View SamplesGene expression of sibling human ES cell lines are more similar to each other than unrelated cell lines.
Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
FUS Regulates Activity of MicroRNA-Mediated Gene Silencing.
Cell line
View SamplesIndividuals with the ALS-linked (amyotrophic lateral sclerosis) truncation mutation (R495X) in FUS (fused in sarcoma) are known to have a more aggressive form of the disease than those with point mutations. The underlying cause for this difference is unclear. We report that FUS is a component of miRISC (miRNA-induced silencing complex) and that overexpression of its truncation mutant R495X negatively impacts miRNA mediated RNA silencing.
FUS Regulates Activity of MicroRNA-Mediated Gene Silencing.
Cell line
View SamplesMitochondrial DNA (mtDNA) mutations are maternally inherited and are associated with a broad range of debilitating and fatal diseases. Assisted reproductive technologies designed to uncouple the inheritance of mtDNA from nuclear DNA may enable women who carry mtDNA mutations to have a genetically related child with a greatly reduced risk of disease. Here we report for the first time that pronuclear transplantation (PNT) between normally fertilised human zygotes provides an effective approach to preventing transmission of mtDNA disease. We found that the procedures previously used to perform PNT between abnormally fertilized human zygotes are highly inefficient when applied to those that undergo normal fertilization. We have therefore developed an alternative approach based on transplanting PN shortly after completion of the second meiotic division rather than shortly before onset of the first mitosis. This approach promotes highly efficient development to the blastocyst stage without affecting nuclear genome integrity. Furthermore, the expression profile of genes encoded by the nuclear and mitochondrial genomes was indistinguishable from unmanipulated control embryos. Importantly, levels of mtDNA transferred with the nuclear genome are below the threshold for mtDNA disease. Together these data indicate that transplantation of pronuclei early in the first cell cycle holds promise as a safe and effective approach to preventing transmission of mtDNA disease. Overall design: Single-Cell RNA-seq analysis of embryos generated by pronuclear transfer and unmanipulated control embryos The relationship between single cell samples and the embryo from which they were derived is indicated in the sample ''characteristics: sample type'' field.
Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease.
No sample metadata fields
View Samples