Identifying the Mechanism of Action (MoA) of drugs is critical for the development of new drugs, understanding their side effects, and drug repositioning. However, identifying drug MoA has been challenging and has been traditionally attempted only though large experimental setups with little success. While advances in computational power offers the opportunity to achieve this in-silico, methods to exploit existing computational resources are still in their infancy. To overcome this, we developed a novel method to identify Drug Mechanism of Action using Network Dysregulation (DeMAND).
Elucidating Compound Mechanism of Action by Network Perturbation Analysis.
Cell line, Time
View SamplesNK cell development, maturation, and activation by cytokines is driven by alterations in gene expression mediated by activation and repression or transcriptional programs. In particular, we have extensively studied the role of STAT3 in human NK cells. This was based in part on a method we developed for in vitro expansion of large numbers of highly active NK cells using a genetically-modified feeder cell expressing 4-1BBL and membrane-bound IL-21. To dissect the various gene expression profiles induced by IL-21 from the various other signals received from the feeder cell, we purified peripheral NK cells from 4 healthy subjects (naïve, N), expanded NK cells for 14 days using CSTX002 feeder cells (expanded, E), and extracted RNA from the cells without (Neg) or after (Pos) the cells were activated with IL-21. We then performed RNA sequencing on each sample. Overall design: NK cells were purified from buffy coats obtained from 4 normal healthy blood-bank donors using RosetteSep NK for negative depletion of other cell subsets. NK cells were expanded by weekly stimulation with irradiated CSTX002 feeder cells. Naïve or expanded NK cells were stimulated for 30 minutes with 20 ng/ml recombinant human IL-21. Total RNA was prepared using the Total RNA Purification Plus Kit (Norgen Biotek, Ontario, ON, Canada). Libraries were prepared using the TruSeq RNA Sample Preparation Kit (Illumina Inc., San Diego, CA). 60–80 million paired-end 150 bp sequence reads per library were generated using the Illumina HiSeq4000 platform.
Efficient and Robust NK-Cell Transduction With Baboon Envelope Pseudotyped Lentivector.
Specimen part, Disease, Treatment, Subject
View SamplesMammalian microRNAs (miRNAs) are emerging as key regulators of the development and function of the immune system. Here, we report a strong but transient induction of miR-155 in mouse bone marrow after injection of bacterial lipopolysaccharide (LPS) correlated with granulocyte/monocyte (GM) expansion. Demonstrating the sufficiency of miR-155 to drive GM expansion, enforced expression in mouse bone marrow cells caused GM proliferation in a manner reminiscent of LPS treatment. However, the mir-155-induced GM populations displayed pathological features characteristic of myeloid neoplasia. Extending possible relevance to human disease, miR-155 was overexpressed in the bone marrow of patients with acute myeloid leukemia (AML). Furthermore, miR-155 repressed a subset of genes implicated in hematopoietic development and disease. These data implicate miR-155 as a contributor to physiological GM expansion during inflammation and to certain pathological features associated with AML, emphasizing the importance of proper miR-155 regulation in developing myeloid cells during times of inflammatory stress.
Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder.
No sample metadata fields
View SamplesThe main goal of our study is to identify the molecular events that determine the gonadal identity in mammals. Although testis and ovary arise from a common embryonic primordium, they represent outcomes of opposing fate determination. This decision to differentiate into a testis or an ovary hinges upon the balance between two antagonizing factors, pro-testis SOX9 and pro-ovary -catenin.
Gonadal Identity in the Absence of Pro-Testis Factor SOX9 and Pro-Ovary Factor Beta-Catenin in Mice.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
VEGF blockade enhances the antitumor effect of BRAFV600E inhibition.
Cell line, Treatment
View SamplesIn this work we investigated the combined effects of the BRAF inhibition and of the VEGF blockade in a preclinical model of melanoma. The purpose of this dataset was to examine the transcriptional responses of a A375 xenograft model to PLX472 and bevacizumab, either as single agents or as combination therapy. We performed species-specific analysis of gene expression to discriminate the effects of the different therapeutic regimens on tumor cells (human) and stromal microenvironment (mouse). Here, Illumina Mouse BeadChips were used to profile the transcriptome after 12 days treatment. We reported that dispensing the dual treatment is more efficient than the single compounds and the occurrence of resistance by modifying the tumor genetic programs regulating myeloid cells recruitment and extracellular matrix remodeling.
VEGF blockade enhances the antitumor effect of BRAFV600E inhibition.
Cell line, Treatment
View SamplesIn this work we investigated the combined effects of the BRAF inhibition and of the VEGF blockade in a preclinical model of melanoma. The purpose of this dataset was to examine the transcriptional responses of a A375 xenograft model to PLX472 and bevacizumab, either as single agents or as combination therapy. We performed species-specific analysis of gene expression to discriminate the effects of the different therapeutic regimens on tumor cells (human) and stromal microenvironment (mouse). Here, Illumina Human BeadChips were used to profile the transcriptome after 12 days treatment. We reported that dispensing the dual treatment is more efficient than the single compounds and the occurrence of resistance by modifying the tumor genetic programs regulating myeloid cells recruitment and extracellular matrix remodeling.
VEGF blockade enhances the antitumor effect of BRAFV600E inhibition.
Cell line, Treatment
View SamplesWe generated genome-wide RNASeq data from freshly isolated airway epithelial cells of asthmatics and non-asthmatics. This data was paired with genome-wide genetic and methylation data from the same individuals allowing for an integrated analysis of genetic, transcriptional, and epigenetic signatures in asthma. Overall design: examination of genome-wide genome-wide gene expression levels and comparison to phenotypes
DNA methylation in lung cells is associated with asthma endotypes and genetic risk.
Specimen part, Disease, Subject
View SamplesThird instar larval eye discs provide an in vivo model for cell cycle exit studies. Posterior to the Second Mitotic Wave proliferation is absent in a wild type eye disc. Inactivating mutations in tumor suppressor-like genes can lead to genome wide changes in gene expression that allow for inappropriate bypass of cell cycle exit signals posterior to the Second Mitotic Wave.
Cooperation between dE2F1 and Yki/Sd defines a distinct transcriptional program necessary to bypass cell cycle exit.
Specimen part
View SamplesIntegrity of the cornea, the most anterior part of the eye is indispensable for vision. 45 million individuals are bilaterally blind and another 135 millions have severely impaired vision in both eyes because of loss of corneal transparency; treatments range from local medications to corneal transplants and more recently to stem cell therapy. The corneal epithelium is a squamous epithelium that is constantly renewing with a vertical turnover of seven to fourteen days in many mammals3. Identification of slow cycling cells (label-retaining cells or LRCs) in the limbus of the mouse has led to the notion that the limbus is the niche for the stem cells responsible for the long-term renewal of the cornea4; hence, the corneal epithelium is supposedly renewed by cells generated at and migrating from the limbus, in striking opposition to other squamous epithelia in which each resident stem cell has in charge a limited area of epithelium. Here, we show that the corneal epithelium of the mouse can be serially transplanted, is self-maintained and contains oligopotent stem cells with the capacity to generate goblet cells if provided with a conjunctival environment. In addition, the entire ocular surface of the pig, including the cornea, contains oligopotent stem cells (holoclones) with the capacity to generate individual colonies of corneal and conjunctival cells; hence, the limbus is not the only niche for corneal stem cells and corneal renewal is not different from other squamous epithelia.
Oligopotent stem cells are distributed throughout the mammalian ocular surface.
No sample metadata fields
View Samples