Single-neuron transcriptome profiles of Dorsal Raphe neurons marked by a history of expression of Drd2::Cre and Pet1::Flpe (GFP+), as well as Dorsal Raphe neurons marked by a history of Pet1::Flpe expression only (mCherry+). Overall design: GFP and mCherry expressing neurons from triple transgenic Drd2::Cre;Pet1::Flpe;RC:FrePe mice were acutely dissociated, manually sorted, and single-neuron RNA-seq was performed (17 GFP+ cells, 8 mCherry+ cells).
Identification of Serotonergic Neuronal Modules that Affect Aggressive Behavior.
Specimen part, Subject
View SamplesCD20 is a clinically validated target for Non-Hodgkins lymphomas and autoimmune diseases. Interactions of CD20 with the B cell receptor (BCR) and components of the BCR signaling cascade have been reported. In this study we show that antibodies against CD20 or activation of the BCR by specific antibodies induce very similar expression patterns of up- or down-regulated genes in NHL cell lines indicating that CD20 may play a role in BCR signaling and vice versa.
Antibodies against CD20 or B-cell receptor induce similar transcription patterns in human lymphoma cell lines.
Cell line, Treatment
View SamplesBackground: Several genetic defects of the nucleotide excision repair (NER) pathway, including deficiency of the Excision Repair Cross-Complementing rodent repair deficiency, complementation group 1 (ERCC1), result in pre-mature aging, impaired growth, microcephaly and delayed development of the cerebellum. Such a phenotype also occurs in ERCC1-knockout mice which survive for up to 4 weeks after birth. Therefore, we analyzed cerebellar and hippocamapal transcriptomes of these animals at 3 weeks of age to identify the candidate mechanisms underlying brain consequences of reduced ERCC1 activity.
Downregulation of cholesterol biosynthesis genes in the forebrain of ERCC1-deficient mice.
No sample metadata fields
View SamplesAdam10, a cell surface protease, cleaving many proteins including TNF-alpha and E-cadherin. Here we investigate the genome wide effects of Adam10 knock out on the transcriptome.
The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling.
Specimen part
View SamplesRetinoic acid (RA), an active derivative of the liposoluble vitamin A (retinol), acts as an important signaling molecule during embryonic development, regulating phenomenons as diverse as anterior-posterior axial patterning, forebrain and optic vesicle development, specification of hindbrain rhombomeres, pharyngeal arches and second heart field, somitogenesis, and differentiation of spinal cord neurons. This small molecule directly triggers gene activation by binding to nuclear receptors (RARs), switching them from potential repressors to transcriptional activators. The repertoire of RA-regulated genes in embryonic tissues is poorly characterized. We performed a comparative analysis of the transcriptomes of murine wild-type and Retinaldehyde Dehydrogenase 2 null-mutant (Raldh2-/-) embryos - unable to synthesize RA from maternally-derived retinol - using Affymetrix DNA microarrays. Transcriptomic changes were analyzed in two embryonic regions: anterior tissues including forebrain and optic vesicle, and posterior (trunk) tissues, at early stages preceding the appearance of overt phenotypic abnormalities. Several genes expected to be downregulated under RA deficiency appeared in the transcriptome data (e.g. Emx2, Foxg1 anteriorly, Cdx1, Hoxa1, Rarb posteriorly), whereas reverse-transcriptase-PCR and in situ hybridization performed for additional selected genes validated the changes identified through microarray analysis. Altogether, the affected genes belonged to numerous molecular pathways and cellular/organismal functions, demonstrating the pleiotropic nature of RA-dependent events. In both tissue samples, genes upregulated were more numerous than those downregulated, probably due to feedback regulatory loops. Bioinformatic clustering analysis allowed us to extract groups of genes displaying similar behaviors in mutant tissue samples. These data give an overview of the gene expression changes occurring under a state of embryonic RA deficiency, and provide new candidate genes and pathways for a better understanding of retinoid-dependent molecular events.
Transcriptomic analysis of murine embryos lacking endogenous retinoic acid signaling.
Specimen part
View SamplesGlucocorticoids (GC) have a major impact on the biology of normal and malignant cells of the lymphoid lineage. This includes induction of apoptosis which is exploited in the therapy of acute lymphoblastic leukemia (ALL) and related lymphoid malignancies. MicroRNAs (miRNAs) and the related mirtrons are ~22 nucleotide RNA molecules implicated in the control of essential biological functions including proliferation, differentiation and apoptosis. They derive from polymerase-II transcripts but whether GCs regulate miRNA-encoding transcription units is not known. We investigated miRNA/mirtron expression and GC regulation in 8 ALL in vitro models and 13 ALL children undergoing systemic GC monotherapy using a combination of expression profiling techniques, real time RT-PCR and northern blotting to detect mature miRNAs and/or their precursors. We identified a number of GC-regulated miRNAs/mirtrons, including the myeloid-specific miR-223 and the apoptosis and cell cycle arrest-inducing mir15~16 cluster. Thus, the observed complex changes in miRNA/mirtron expression during GC treatment might contribute to the anti-leukemic GC effects in a cell context dependent manner.
Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia.
No sample metadata fields
View SamplesCells were grown to saturation in YPD (YEP + 2% glucose) for 24 hours, diluted into YPA (YEP + 2% potassium acetate) at OD600= 0.3 and grown over night at 30C. Cells were washed with sterilized water the next day and re-suspended in SPII medium (0.3% potassium acetate, pH = 7.0) at OD600= 1.9 to induce sporulation. Cells were sporulated at room temperature or 30C as indicated. Sporulation medium containing benomyl was always prepared freshly on the day of the experiment following the directions in {Shonn, 2000 #90}. Briefly, DMSO (dimethyl sulfoxide, Sigma-Aldrich) or benomyl [Methyl 1-(butylcarbamoyl)-2-benzimidazolecarbamate, Sigma-Aldrich; 30 mg/ml stock in DMSO] was dissolved in near-boiling SPII medium to avoid precipitation. The medium was then allowed to slowly cool to 30C or room temperature. At the time of drug treatment, cells were filtered and immediately re-suspended in the medium containing benomyl or DMSO.
Novel response to microtubule perturbation in meiosis.
No sample metadata fields
View SamplesWe aimed to analyze the effects of Wnt-1 overexpression on the mRNA expression profile of human melanoma in a mouse xenograft model and correlated the results with then presence or absence of lymphangiogenesis and metastasis. Affymetrix gene expression analysis revealed activation of canonical and non-canonical targets genes in response to Wnt-1 as compared with controls. In regard to lymphangiogenic factors, the amount of VEGF-C was the single best marker to correlate with the amount of lymph-angiogenesis.
Wnt1 is anti-lymphangiogenic in a melanoma mouse model.
Cell line, Treatment
View SamplesAmyotrophic lateral sclerosis (ALS) is a fatal adult-onset neuromuscular disorder characterized by the selective degeneration of upper and lower motor neurons, progressive muscle wasting and paralysis. To define the full set of alterations in gene expression in skeletal muscle during the course of the disease, we performed high-density oligonucleotide microarray analysis of gene expression in hind limb skeletal muscles of sod1(G86R) mice, one of the existing transgenic models of ALS. To monitor denervation-dependent gene expression, we determined the effects of short-term acute denervation on the muscle transcriptome after sciatic nerve axotomy.
Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model.
Sex, Age, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesStudy of Sox18 regulated genes: Human umbilical vein endothelial cells (HUVEC) were either transduced with adenoviral vectors expressing SOX18 from an IRES-EGFP casette, or IRES-EGFP alone, or left untreated. After 16 hours, mRNA was isolated and analyzed by hybridization to Affymetrix HG-U133A arrays.
The transcription factor SOX18 regulates the expression of matrix metalloproteinase 7 and guidance molecules in human endothelial cells.
No sample metadata fields
View Samples