Laser capture microdissected choroid plexuses were obtained and expression arrays were generated to investigate gene expression in wt and ApoE choroid plexuses; the choroid plexus forms the cerebrospinal fluid, the cerebrospinal fliod barrier, functions as the major gateway for blood-born leukocytes to enter the brain in degenerative and inflammatory brain diseases, and the principal neuroimmune interface in the brain. We found lipid deposits in the aged choroid plexus of hyperlipidemic mice but none in the wt control choroid plexuses. Here, we studied the functional impact and gene epressions in wt and ApoE-deficient choroid plexuses.
ApoE attenuates unresolvable inflammation by complex formation with activated C1q.
Sex, Age, Specimen part
View SamplesAdam10, a cell surface protease, cleaving many proteins including TNF-alpha and E-cadherin. Here we investigate the genome wide effects of Adam10 knock out on the transcriptome.
The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling.
Specimen part
View SamplesThe intention was to detect genes that are determining trastuzumab efficiency in HER2-positive breast cancer cell lines with different resistance phenotypes. While BT474 should be sensitive to the drug treatment, HCC1954 is expected to be resistant due to a PI3K mutation. The cell line BTR50 has been derived from BT474 and was cultured to be resistant as well. Based on RNA-Seq data, we performed differential expression analyses on these breast cancer cell lines with and without trastuzumab treatment. In detail, five separate tests were performed, namely resistant cells vs. wild type, i.e. HCC1954 and BTR50 vs. BT474, respectively, and untreated vs. drug treated cells. The significant genes of the first two tests should contribute to resistance. The significant genes of the test BT474 vs. its drug treated version should contribute to the trastuzumab effect. To exclude false positives from the combined gene set (#64), we removed ten genes that were also significant in the test BTR50 vs. its drug treated version. This way we ended up with 54 genes that are very likely to determine trastuzumab efficiency in HER2-positive breast cancer cell lines. Overall design: mRNA profiles of human breast cancer cell lines were generated by deep sequencing using Illumina HiSeq 2000. The cell lines BT474 and HCC1954 were analyzed with and without trastuzumab treatment. HCC1954 is known to be trastuzumab resistant. Additionally, the cell line BTR50 was generated as resistant version of BT474, and was analyzed with and without trastuzumab as well.
mRNA profiling reveals determinants of trastuzumab efficiency in HER2-positive breast cancer.
No sample metadata fields
View SamplesRNAseq was performed on zebrafish larvae infected with bacteria under different osmotic pressures. The trascriptome profile generated here reveals the differential immune gene expression pattern. Overall design: Pseudomonas aeruginosa resuspended in either standard or isotonic E3 were injected into the otic vesicle of zebrafish larvae. Uninjected zebrafish larvae served as control. Total RNA was extracted after 1 hour of infection and processed to following sequencing.
Tissue Damage Signaling Is a Prerequisite for Protective Neutrophil Recruitment to Microbial Infection in Zebrafish.
Specimen part, Cell line, Treatment, Subject
View SamplesCD20 is a clinically validated target for Non-Hodgkins lymphomas and autoimmune diseases. Interactions of CD20 with the B cell receptor (BCR) and components of the BCR signaling cascade have been reported. In this study we show that antibodies against CD20 or activation of the BCR by specific antibodies induce very similar expression patterns of up- or down-regulated genes in NHL cell lines indicating that CD20 may play a role in BCR signaling and vice versa.
Antibodies against CD20 or B-cell receptor induce similar transcription patterns in human lymphoma cell lines.
Cell line, Treatment
View SamplesBackground: Several genetic defects of the nucleotide excision repair (NER) pathway, including deficiency of the Excision Repair Cross-Complementing rodent repair deficiency, complementation group 1 (ERCC1), result in pre-mature aging, impaired growth, microcephaly and delayed development of the cerebellum. Such a phenotype also occurs in ERCC1-knockout mice which survive for up to 4 weeks after birth. Therefore, we analyzed cerebellar and hippocamapal transcriptomes of these animals at 3 weeks of age to identify the candidate mechanisms underlying brain consequences of reduced ERCC1 activity.
Downregulation of cholesterol biosynthesis genes in the forebrain of ERCC1-deficient mice.
No sample metadata fields
View SamplesTranscriptomes of mesenchymal stromal cells from bone marrow (bmMSC) were compared to MSC from term placenta (pMSC).
Expression of Desmoglein 2, Desmocollin 3 and Plakophilin 2 in Placenta and Bone Marrow-Derived Mesenchymal Stromal Cells.
Specimen part
View SamplesThese samples were all taken from patients who underwent investigations including colonoscopy but where all tests were normal and the diagnosis of irritable bowel syndrome was reached. These observations have been used as references in studies of colonic gene expression in inflammatory bowel diseases
Clinical phenotype and gene expression profile in Crohn's disease.
No sample metadata fields
View SamplesEpilepsy is a common cause of morbidity affecting approximately one third of patients with primary brain tumors. However, the molecular mechanism underlying the tumor induced epileptogenesis is poorly understood. The alteration in peritumoral microenvironments is believed to play a significant role in inducing epileptogenesis.
Transcriptomic profiling of human peritumoral neocortex tissues revealed genes possibly involved in tumor-induced epilepsy.
Sex, Specimen part, Disease, Disease stage
View SamplesThe culture of neural stem cells (NSCs) as floating neurospheres has become widely used as an experimental model to analyse the properties of NSCs. Although the neurosphere model has existed for two decades, there is still no standard protocol to grow NSCs in this way. Thus, we have analysed the consequences of the frequency of growth factor (FGF-2 and EGF) addition to embryonic and adult olfactory bulb stem cells (eOBSCs and aOBSCs) cultures, specifically in terms of proliferation, cell cycle progression, death and differentiation, as well as on global changes in gene expression and signaling pathways. We found that addition of FGF-2 and EGF every two or four days rather than daily significantly reduces the volume of the neurospheres and the total number of cells, changes that were more evident in aOBSC than in eOBSC cultures. The reduction in neurosphere size was mainly due to an increase in cell death and occurs without major changes in the cell cycle parameters tested. Moreover, partial deprivation of FGF-2 and EGF produces a mild increase in aOBSC differentiation during the proliferative phase. Remarkably, these effects were accompanied by a significant upregulation in the expression of genes involved in cell death regulation (Cryab), lipid catabolic processes (Pla2g7), cell adhesion (Dscaml1), cell differentiation (Dscaml1, Gpr17, S100b) and signal transduction (Gpr17, Ndrg2), among others. These findings support that continuous supply of FGF-2 and EGF is critical to maintain the viability/survival of NSCs in culture and reveals novel molecular hallmarks of NSC maintenance/survival and expansion in response to these growth factors.
A global transcriptome analysis reveals molecular hallmarks of neural stem cell death, survival, and differentiation in response to partial FGF-2 and EGF deprivation.
Specimen part
View Samples