This SuperSeries is composed of the SubSeries listed below.
PML is a ROS sensor activating p53 upon oxidative stress.
Sex, Age, Specimen part, Cell line, Race, Time
View SamplesThe Pml gene is essential to the formation of PML nuclear bodies, domains which have been associated with various functions such as apoptosis/senescence, DNA repair and cell proliferation( Lallemand-Breitenbach 2010). PML-NBs formation is regulated by cellular stress including oxidative stress(Jeanne 2010, de The 2012). To investigate the role of PML in ROS response in vivo, we analyse the expression difference to the acetaminophen toxicity, which is initiated by ROS, in Pml wt and Pml KO mice.
PML is a ROS sensor activating p53 upon oxidative stress.
Sex, Age, Specimen part
View SamplesThe Pml gene is essential to the formation of PML nuclear bodies, domains which have been associated with various functions such as apoptosis/senescence, DNA repair and cell proliferation( Lallemand-Breitenbach 2010). PML-NBs formation is regulated by cellular stress including oxidative stress(Jeanne 2010, de The 2012). To investigate the role of PML in ROS response in vivo, we analyse the expression difference betweem Pml wt and Pml KO under fasted condition, which easily up-regulate ROS in BALB/cByJ background
PML is a ROS sensor activating p53 upon oxidative stress.
Sex, Age, Specimen part
View SamplesPML nuclear bodies (NBs) recruit partner proteins -including p53 and its regulators- controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB-biogenesis. Yet, physiological links between PML and oxidative stress response in vivo remain unexplored. Here we identify PML as a reactive oxygen species (ROS) sensor. Pml-/- cells accumulate ROS, while PML expression decreases ROS levels. Unexpectedly, Pml-/- embryos survive acute glutathione depletion. Moreover, Pml-/- animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml-/- animals fail to properly activate oxidative stress-responsive p53 targets, while NRF2 response is accelerated. Finally, in an oxidative stress-prone background, Pml-/- animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal anti-oxidant properties, but also drives oxidative stress-induced changes in cell survival/proliferation or metabolism in vivo. Through NB-biogenesis, PML therefore couples ROS-sensing to p53 responses, shedding a new light on PML role in senescence or stem cell biology.
PML is a ROS sensor activating p53 upon oxidative stress.
Sex, Cell line, Race, Time
View SamplesNeurofibromatosis Type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating effects of hyperactive Ras in NF1 tumors are unknown. Cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs identified global negative feedback of genes that regulate Ras-Raf- MEK- extracellular signal-regulated protein kinase (ERK) signaling in both species. Nonetheless, activation of ERK was sustained in mouse and human neurofibromas and MPNST. PD0325901, a highly selective pharmacological inhibitor of MEK, was used to test whether sustained Ras-Raf-MEK-ERK signaling contributes to neurofibroma growth in the Nf1fl/fl;Dhh-cre mouse model or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in >80% of mice tested. PD0325901 also caused effects on tumor vasculature. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide strong rationale for testing MEK inhibitors in NF1 clinical trials.
MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors.
Specimen part
View SamplesInstructive mechanisms are present for induction of DNA methylation, as shown by methylation of specific CpG islands (CGIs) by specific inducers and in specific cancers. However, instructive factors involved are poorly understood, except for involvement of low transcription and trimethylation of histone H3 lysine 27 (H3K27me3). Here, we used methylated DNA immunoprecipitation (MeDIP) combined with a CGI oligonucleotide microarray analysis, and identified 5510 and 521 genes with promoter CGIs resistant and susceptible, respectively, to DNA methylation in prostate cancer cell lines. Expression analysis revealed that the susceptible genes had low transcription in a normal prostatic epithelial cell line. Chromatin immunoprecipitation with microarray hybridization (CHiP-chip) analysis of RNA polymerase II (Pol II) and histone modifications showed that, even among the genes with low transcription, the presence of Pol II was associated with marked resistance to DNA methylation (OR = 0.22; 95% CI = 0.12-0.38), and H3K27me3 was associated with increased susceptibility (OR = 11.20; 95% CI = 7.14-17.55). The same was true in normal human mammary epithelial cells for 5430 and 733 genes resistant and susceptible, respectively, to DNA methylation in breast cancer cell lines. These results showed that the presence of Pol II, active or stalled, and H3K27me3 can predict the epigenetic fate of promoter CGIs independently of transcription levels.
The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands.
Cell line
View SamplesDuring embryogenesis, many key transcription factors are used repeatedly, achieving different outcomes depending on cell type and developmental stage. The epigenetic modification of the genome functions as a memory of a cells developmental history, and it has been proposed that such modification shapes the cellular response to transcription factors. To investigate the role of DNA methylation in the response to transcription factor Gata4, we examined expression profiles of Dnmt3a-/-Dnmt3b-/- ES cell-derived mesoderm cells cultured for 4 days with or without Gata4 activation, as well as the wild-type counterparts, using Affymetrix microarrays.
DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation.
Specimen part
View SamplesRNA sequencing was performed to examine differential gene expression profiles in the ring gland of PG-specific Séance RNAi animals versus control. Overall design: Drosophila larvae with PG-specific knockdown of Séance and control animals were carefully staged at the larval L2/L3 molt. Ring glands were dissected at 44 hours L3. RNA isolated from ring glands were subject to RNA sequencing. Differential gene expression profiles were compared between control and RNAi animals.
Cooperative Control of Ecdysone Biosynthesis in <i>Drosophila</i> by Transcription Factors Séance, Ouija Board, and Molting Defective.
Specimen part, Subject
View SamplesDuring gastrulation, cells of the prospective mesoderm ingress through the primitive streak and acquire fates based on complex spatial and temporal cues. Progenitors of the cardiogenic mesoderm are first found at E6.5 in the posterior lateral epiblast and subsequently migrate laterally and anteriorly to form the cardiac crescent at E7.5, when regionalized cell fates are first delineated . Lineage tracing and heterotopic transplantation studies suggest that precursors in the earliest heart field possess potential to generate myocardium, endocardium, and pericardium. The mechanisms by which inductive signals in the primitive streak effect the development of this pancardiac progenitor field, however, remain poorly understood
Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs.
No sample metadata fields
View SamplesThe purpose of this study is to determine the changes in gene expression by a human retinal pigment epithelium (RPE) cell line (ARPE-19) in response to combination treatment of TGF and TNF, which induces phenotypic changes in vitro that mimic the EMT (Epithelial-to-Mesenchymal Transition).
Tumor necrosis factor-alpha regulates transforming growth factor-beta-dependent epithelial-mesenchymal transition by promoting hyaluronan-CD44-moesin interaction.
No sample metadata fields
View Samples