refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon SRP001462
Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

Next-generation sequencing has become an important tool for genome-wide quantification of DNA and RNA. However, a major technical hurdle lies in the need to map short sequence reads back to their correct locations in a reference genome. Here we investigate the impact of SNP variation on the reliability of read-mapping in the context of detecting allele-specific expression (ASE).We generated sixteen million 35 bp reads from mRNA of each of two HapMap Yoruba individuals. When we mapped these reads to the human genome we found that, at heterozygous SNPs, there was a significant bias towards higher mapping rates of the allele in the reference sequence, compared to the alternative allele. Masking known SNP positions in the genome sequence eliminated the reference bias but, surprisingly, did not lead to more reliable results overall. We find that even after masking, $\sim$5-10\% of SNPs still have an inherent bias towards more effective mapping of one allele. Filtering out inherently biased SNPs removes 40\% of the top signals of ASE. The remaining SNPs showing ASE are enriched in genes previously known to harbor cis-regulatory variation or known to show uniparental imprinting. Our results have implications for a variety of applications involving detection of alternate alleles from short-read sequence data. Scripts, written in Perl and R, for simulating short reads, masking SNP variation in a reference genome, and analyzing the simulation output are available upon request from JFD. Overall design: RNA-Seq on two YRI Hapmap cell lines. Each individual sequenced on two lanes of the Illumina Genome Analyzer

Publication Title

Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP001540
Understaning mechanisms underlying human gene expression variation with RNA sequencing
  • organism-icon Homo sapiens
  • sample-icon 161 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

Understanding the genetic mechanisms underlying natural variation in gene expression is a central goal of both medical and evolutionary genetics, and studies of expression quantitative trait loci (eQTLs) have become an important tool for achieving this goal. While all eQTL studies to date have assayed mRNA levels using expression microarrays, recent advances in RNA sequencing enable the analysis of transcript variation at unprecedented resolution. We sequenced RNA from 69 lymphoblastoid cell lines (LCLs) derived from unrelated Nigerian individuals that have been extensively genotyped by the International HapMap Project. Pooling data from all individuals, we generated a map of the transcriptional landscape of these cells, identifying extensive use of unannotated polyadenylation sites and over 100 novel putative protein-coding exons. Using the genotypes from the HapMap project, we identified over a thousand genes at which genetic variation influences overall expression levels or splicing. We demonstrate that eQTLs near genes generally act via a mechanism involving allele-specific expression, and that variation that influences the inclusion of an exon is enriched within or near the consensus splice sites. Our results illustrate the power of high-throughput sequencing for the joint analysis of variation in transcription, splicing, and allele-specific expression across individuals. Overall design: RNA-Seq in 69 lymphoblastoid cell lines from multiple Yoruban HapMap individuals in at least two replicate lanes per individual

Publication Title

Understanding mechanisms underlying human gene expression variation with RNA sequencing.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact