This SuperSeries is composed of the SubSeries listed below.
Human oocytes reprogram somatic cells to a pluripotent state.
Specimen part
View SamplesThe exchange of the oocyte's genome with the genome of a somatic cell, followed by the derivation of pluripotent stem cells, could enable the generation of specific cell types affected in degenerative human diseases. Such cells, carrying the patient's genome, might be useful for cell replacement. Here we report that the development of human oocytes activated after genome exchange invariably arrests at the late cleavage stages in association with transcriptional abnormalities. In contrast, if the oocyte genome is not removed and the somatic cell genome is merely added, they efficiently develop to the blastocyst stage. Human stem cell lines derived from these blastocysts differentiate into cell types of all three germ layers, and a pluripotent gene expression program is established on the genome derived from the somatic cell. This result demonstrates the feasibility of reprogramming human cells using oocytes and identifies the removal of the oocyte genome as the primary cause of developmental failure after genome exchange. Future work should focus on the critical elements that are associated with the human oocyte genome.
Human oocytes reprogram somatic cells to a pluripotent state.
Specimen part
View SamplesThe exchange of the oocytes genome with the genome of a somatic cell, followed by the derivation of pluripotent stem cells, could enable the generation of specific cell types affected in degenerative human diseases. Such cells, carrying the patients genome, might be useful for cell replacement. Here we report that the development of human oocytes activated after genome exchange invariably arrests at the late cleavage stages in association with transcriptional abnormalities. In contrast, if the oocyte genome is not removed and the somatic cell genome is merely added, they efficiently develop to the blastocyst stage. Human stem cell lines derived from these blastocysts differentiate into cell types of all three germ layers, and a pluripotent gene expression program is established on the genome derived from the somatic cell. This result demonstrates the feasibility of reprogramming human cells using oocytes and identifies the removal of the oocyte genome as the primary cause of developmental failure after genome exchange. Future work should focus on the critical elements that are associated with the human oocyte genome.
Human oocytes reprogram somatic cells to a pluripotent state.
Specimen part
View SamplesWe characterized the gene expression differences in mDA neurons from all PD (Parkinson''s disease) cases (6 independent samples) and controls (8 independent samples), identifying 1,028 differentially expressed genes making up the PD expression signature. Strikingly, MAOB gene was identified as significantly differentially expressed (p = 0.046). The heat map clearly differentiates cases from controls, where interestingly most differentially expressed genes had lower expression in PD cases compared to controls. In the clustering, the RNA expression pattern of the control (C2) with a family history of PD located close to the PD expression signature suggested a susceptibility to PD. Overall design: RNA was isolated from FAC-sorted cells of 14 samples (biological duplicates for each cell line, 7 cell lines in total) using RNeasy Micro Kit (QIAGEN). Quality control of the RNA was carried out with the Agilent Bio-analyzer, Qubit 2.0 at the MPSR of Columbia University. 100 ng of RNA with RIN = 9 were used for generating mRNA-focused libraries using TruSeq RNA Sample Preparation Kit v2 and sequencing on an Illumina 2000/2500 V3 Instrument offered by the Columbia Genome Center.
iPSC-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson's disease.
No sample metadata fields
View SamplesAlthough many distinct mutations in a variety of genes are known to cause Amyotrophic Lateral Sclerosis (ALS), it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neural degeneration. Here, we have combined reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing to define the transcriptional changes that are induced in human motor neurons by mutant SOD1. Mutant SOD1 protein induced a transcriptional signature indicative of increased oxidative stress, reduced mitochondrial function, altered sub-cellular transport as well as activation of the ER stress and unfolded protein response pathways. Functional studies demonstrated that perturbations in these pathways were indeed the source of altered transcript levels. Overall design: 5 samples, 2 patient-derived SOD1A4V and 3 isogenic control samples where the mutation has been corrected. All samples are motor neurons derived from induced pluripotent stem cells (iPSCs), and isolated after lentiviral infection with an Hb9:RFP construct and FACS purification. Each sample is a separate biological replicate.
Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1.
No sample metadata fields
View SamplesHuman cytomegalovirus (HCMV) induces pro-inflammatory monocytes following infection and we have evidence that EGFR is a key mediator in this early activation. To begin to address how this signalling pathway is responsible for the rapid activation of infected monocytes, we examined the role this pathway played in the transcriptome of infected monocytes. Global transcriptional profiling using cDNA microarrays revealed a significant number of genes, including inflammatory genes, were regulated in a EGFR-dependent manner, identifying this pathway as a key cellular control point in the conversion of monocytes to an activated pro-inflammatory state following HCMV infection.
Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility.
Specimen part
View SamplesAngiotensin II (Ang-II) regulates adrenal steroid production and gene transcription through several signaling pathways. Changes in gene transcription occur within minutes after Ang-II stimulation, causing an acute increase in aldosterone production and subsequent increase in the overall capacity to produce aldosterone. Our goal was to compare the Ang-II regulation of early gene expression and confirm the upregulation of selected genes using quantitative real-time RT-PCR (qPCR) across three species: human, bovine, and rat.
Angiotensin-II acute regulation of rapid response genes in human, bovine, and rat adrenocortical cells.
No sample metadata fields
View SamplesHuman cytomegalovirus (HCMV) induces pro-inflammatory monocytes following infection and we have evidence that phosphatidylinositol 3-kinase [PI(3)K] is a key mediator in this activation. To begin to address how this signalling pathway is responsible for the functional changes in infected monocytes, we examined the role this pathway played in the transcriptome of infected monocytes. Global transcriptional profiling using cDNA microarrays revealed a significant number of genes were regulated in a PI(3)K-dependent manner, identifying this pathway as a key cellular control point in the conversion of monocytes to an activated pro-inflammatory state following HCMV infection.
PI3K-dependent upregulation of Mcl-1 by human cytomegalovirus is mediated by epidermal growth factor receptor and inhibits apoptosis in short-lived monocytes.
Specimen part
View SamplesPhosphate is essential for healthy bone growth and plays an essential role in fracture repair. Although phosphate deficiency has been shown to impair fracture healing, the mechanisms involved in impaired healing are unknown. More recently, studies have shown that the effect of phosphate deficiency on the repair process varied based on the genetic strain of mice, which is not characterized.
Hypophosphatemia Regulates Molecular Mechanisms of Circadian Rhythm.
Sex, Specimen part, Time
View SamplesMED1 (Mediator complex subunit 1) is expressed by human epidermal keratinocytes and functions as a coactivator of several transcription factors. To elucidate the role of MED1 in keratinocytes, we established keratinocyte-specific MED1-null (MED1epi-/-) mice using the K5Cre-LoxP system.
Roles of MED1 in quiescence of hair follicle stem cells and maintenance of normal hair cycling.
Specimen part
View Samples