This SuperSeries is composed of the SubSeries listed below.
Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes.
Age
View SamplesPancreatic islet beta cell failure causes type 2 diabetes (T2D). The IMIDIA consortium has used a strategy entailing a stringent comparative transcriptomics analysis of islets isolated enzymatically or by laser microdissection from two large cohorts of non-diabetic (ND) and T2D organ donors (OD) or partially pancreatectomized patients (PPP). This work led to the identification of a signature of genes that were differentially expressed between T2D and ND regardless of the sample type (OD or PPP). This signature includes 19 genes, of which 9 have never been previously reported to be differentially expressed in T2D islets. The PPP cohort also includes samples from individuals with impaired glucose tolerance (IGT) or recent onset diabetes associated with a pancreatic exocrine disorder (T3cD). Notably, none of the 19 signature genes of T2D islets were significantly dysregulated in islets of subjects with IGT or T3cD, suggesting that their changed expression reflects beta cell deterioration rather than a deficit preceding it.
Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes.
Age
View SamplesPancreatic islet beta cell failure causes type 2 diabetes (T2D). The IMIDIA consortium has used a strategy entailing a stringent comparative transcriptomics analysis of islets isolated enzymatically or by laser microdissection from two large cohorts of non-diabetic (ND) and T2D organ donors (OD) or partially pancreatectomized patients (PPP). This work led to the identification of a signature of genes that were differentially expressed between T2D and ND regardless of the sample type (OD or PPP). This signature includes 19 genes, of which 9 have never been previously reported to be differentially expressed in T2D islets. The PPP cohort also includes samples from individuals with impaired glucose tolerance (IGT) or recent onset diabetes associated with a pancreatic exocrine disorder (T3cD). Notably, none of the 19 signature genes of T2D islets were significantly dysregulated in islets of subjects with IGT or T3cD, suggesting that their changed expression reflects beta cell deterioration rather than a deficit preceding it.
Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes.
Age
View SamplesHuman cytomegalovirus (HCMV) induces pro-inflammatory monocytes following infection and we have evidence that EGFR is a key mediator in this early activation. To begin to address how this signalling pathway is responsible for the rapid activation of infected monocytes, we examined the role this pathway played in the transcriptome of infected monocytes. Global transcriptional profiling using cDNA microarrays revealed a significant number of genes, including inflammatory genes, were regulated in a EGFR-dependent manner, identifying this pathway as a key cellular control point in the conversion of monocytes to an activated pro-inflammatory state following HCMV infection.
Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility.
Specimen part
View SamplesAngiotensin II (Ang-II) regulates adrenal steroid production and gene transcription through several signaling pathways. Changes in gene transcription occur within minutes after Ang-II stimulation, causing an acute increase in aldosterone production and subsequent increase in the overall capacity to produce aldosterone. Our goal was to compare the Ang-II regulation of early gene expression and confirm the upregulation of selected genes using quantitative real-time RT-PCR (qPCR) across three species: human, bovine, and rat.
Angiotensin-II acute regulation of rapid response genes in human, bovine, and rat adrenocortical cells.
No sample metadata fields
View SamplesHuman cytomegalovirus (HCMV) induces pro-inflammatory monocytes following infection and we have evidence that phosphatidylinositol 3-kinase [PI(3)K] is a key mediator in this activation. To begin to address how this signalling pathway is responsible for the functional changes in infected monocytes, we examined the role this pathway played in the transcriptome of infected monocytes. Global transcriptional profiling using cDNA microarrays revealed a significant number of genes were regulated in a PI(3)K-dependent manner, identifying this pathway as a key cellular control point in the conversion of monocytes to an activated pro-inflammatory state following HCMV infection.
PI3K-dependent upregulation of Mcl-1 by human cytomegalovirus is mediated by epidermal growth factor receptor and inhibits apoptosis in short-lived monocytes.
Specimen part
View SamplesPhosphate is essential for healthy bone growth and plays an essential role in fracture repair. Although phosphate deficiency has been shown to impair fracture healing, the mechanisms involved in impaired healing are unknown. More recently, studies have shown that the effect of phosphate deficiency on the repair process varied based on the genetic strain of mice, which is not characterized.
Hypophosphatemia Regulates Molecular Mechanisms of Circadian Rhythm.
Sex, Specimen part, Time
View SamplesMED1 (Mediator complex subunit 1) is expressed by human epidermal keratinocytes and functions as a coactivator of several transcription factors. To elucidate the role of MED1 in keratinocytes, we established keratinocyte-specific MED1-null (MED1epi-/-) mice using the K5Cre-LoxP system.
Roles of MED1 in quiescence of hair follicle stem cells and maintenance of normal hair cycling.
Specimen part
View SamplesThe success of TNF inhibitors for treatment of psoriasis and other inflammatory diseases was previously attributed to blockade of innate immunity. In a clinical trial using etanercept TNF blocking agent to treat psoriasis vulgaris, we used affymetrix gene arrays to analyze broad gene profiles in lesional skin at multiple timepoints during drug treatment (baseline, and weeks 1, 2, 4 and 12) compared to non-lesional skin. This analysis created a temporal model of TNF-dependent gene regulation that informs molecular mechanisms of TNF-mediated inflammation. We identified four gene clusters that were differentially down-modulated during etanercept treatment: the cluster down-regulated most rapidly contained mostly dendritic cell activation genes. Culturing human keratinocytes with TNF, IFNg and IL-17 generated a list of keratinocyte genes regulated by each cytokine. The IL-17 pathway genes were strongly down-modulated early, whereas IFNg pathway genes were not down-modulated until final disease resolution at week 12. Finally, we show that TNF blockade rapidly inhibits IL-12/IL-23 p40 subunit expression, and that p40 neutralization inhibits psoriatic dermal migr-mediated Th17 polarization. We hypothesize that etanercept inhibits myeloid dendritic cell production of IL-23, a Th17 survival cytokine, resulting in rapid downregulation of IL-17 pathway genes. This data links effects of TNF blockade on the innate immune system with the adaptive immune system.
Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes.
Subject, Time
View SamplesMHC-I overexpression in muscle biopsies is a hallmark of inflammatory myopathies.However the mechanisms of MHC-I overexpression in each disease is not well understood. Microarray analysis from MHC-I-microdissected myofibers showed a differential expression signature in each inflammatory myopathy. Innate immunity and IFN-I pathways are upregulated vs healthy controls, specifically in dermatomyositis (DM).
Altered RIG-I/DDX58-mediated innate immunity in dermatomyositis.
Specimen part, Disease
View Samples