The aim of the present study was to examine potential differences in the regulation of myocardial ECM constituents, in mice that develop hypertrophy only (ABnonHF) and in mice that develop overt heart failure (ABHF) as response to pressure overload.
Differential regulation of extracellular matrix constituents in myocardial remodeling with and without heart failure following pressure overload.
Specimen part, Treatment
View SamplesSystemic inflammation like in sepsis is still lacking specific diagnostic markers and effective therapeutics. The first line of defense against intruding pathogens and endogenous damage signals is pattern recognition by e.g., complement and Toll-like receptors (TLR). Combined inhibition of a key complement component (C3 and C5) and TLR-co-receptor CD14 has been shown to attenuate certain systemic inflammatory responses. Using DNA microarray and gene annotation analyses, we aimed to decipher the effect of combined inhibition of C3 and CD14 on the transcriptional response to bacterial challenge in human whole blood. Importantly, combined inhibition reversed the transcriptional changes of 70% of the 2335 genes which significantly responded to heat-inactivated Escherichia coli by on average 80%. Single inhibition was less efficient (p<0.001) but revealed a suppressive effect of C3 on 21% of the responding genes which was partially counteracted by CD14. Furthermore, CD14 dependency of the Escherichia coli-induced response was increased in C5-deficient compared to C5-sufficient blood. The observed crucial distinct and synergistic roles for complement and CD14 on the transcriptional level correspond to their broad impact on the inflammatory response in human blood, and their combined inhibition may become inevitable in the early treatment of acute systemic inflammation.
CD14 and complement crosstalk and largely mediate the transcriptional response to Escherichia coli in human whole blood as revealed by DNA microarray.
Specimen part
View SamplesPerinatal asphyxia is detrimental to the newborn baby and the use of supplemental oxygen during resuscitation may worsen the prognosis of these babies. The mechanism behind hyperoxic injury is not fully understood and our aim was to investigate four oxygen therapies following hypoxia and these effects on transcriptional activity.
Transcriptome profiling of the newborn mouse brain after hypoxia-reoxygenation: hyperoxic reoxygenation induces inflammatory and energy failure responsive genes.
Specimen part
View SamplesChemokines have been suggested to play a role during development of left ventricular failure, but little is known about their role during right ventricular (RV) remodeling and dysfunction. The first aim of this study was to identify chemokines which are regulated during RV pressure overload. We then hypothesized that these chemokines regulate SLRPs (small leucine-rich proteoglycans)
Chemokines regulate small leucine-rich proteoglycans in the extracellular matrix of the pressure-overloaded right ventricle.
Sex, Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expansion of multipotent stem cells from the adult human brain.
Sex, Age, Specimen part
View SamplesTissue repair using cell transplantation holds popular appeal. This underlines the need to understand stem cells within the target organ. Our laboratory works on the human brain. Using neurosphere methods, we and others have only been able to passage stem/progenitors a very few times with little expansion of numbers. Now we describe an efficient method for the establishment and propagation of human brain stem cells from whatever tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency markers Sox2 and Oct4 are expressed without artificial induction. For the first time, multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells' behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient's own-derived stem cells.
Expansion of multipotent stem cells from the adult human brain.
Sex, Age, Specimen part
View SamplesTissue repair using cell transplantation holds popular appeal. This underlines the need to understand stem cells within the target organ. Our laboratory works on the human brain. Using neurosphere methods, we and others have only been able to passage stem/progenitors a very few times with little expansion of numbers. Now we describe an efficient method for the establishment and propagation of human brain stem cells from whatever tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency markers Sox2 and Oct4 are expressed without artificial induction. For the first time, multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells' behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient's own-derived stem cells.
Expansion of multipotent stem cells from the adult human brain.
Sex, Age, Specimen part
View SamplesTissue repair using cell transplantation holds popular appeal. This underlines the need to understand stem cells within the target organ. Our laboratory works on the human brain. Using neurosphere methods, we and others have only been able to passage stem/progenitors a very few times with little expansion of numbers. Now we describe an efficient method for the establishment and propagation of human brain stem cells from whatever tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency markers Sox2 and Oct4 are expressed without artificial induction. For the first time, multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells' behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient's own-derived stem cells.
Expansion of multipotent stem cells from the adult human brain.
Sex, Age, Specimen part
View SamplesTissue repair using cell transplantation holds popular appeal. This underlines the need to understand stem cells within the target organ. Our laboratory works on the human brain. Using neurosphere methods, we and others have only been able to passage stem/progenitors a very few times with little expansion of numbers. Now we describe an efficient method for the establishment and propagation of human brain stem cells from whatever tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency markers Sox2 and Oct4 are expressed without artificial induction. For the first time, multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells' behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient's own-derived stem cells.
Expansion of multipotent stem cells from the adult human brain.
Sex, Age, Specimen part
View SamplesInflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role for chemokines is largely unknown. The aim of this study was to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF
Lack of chemokine signaling through CXCR5 causes increased mortality, ventricular dilatation and deranged matrix during cardiac pressure overload.
Sex, Specimen part
View Samples