refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 47 results
Sort by

Filters

Technology

Platform

accession-icon GSE27817
Transcriptome changes at the initiation of elongation in the bovine conceptus
  • organism-icon Bos taurus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Temporal changes in the embryo transcriptome between the blastocyst stage (Day 7) and initiation of elongation (Day 13) differ between in vivo- and in vitro-derived embryos and are reflective of subsequent developmental fate.

Publication Title

Transcriptome changes at the initiation of elongation in the bovine conceptus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP061430
RNA-sequencing of tamoxifen resistant LY2 cells transfected with siRNA-HOXC11.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

To assess the global effects of HOXC11 in endocrine resistant breast cancer cells we performed RNA-seq on LY2 cells which were transfected with either siRNA targeting HOXC11 (siHOXC11) or a scrambled negative control siRNA (scrHOXC11) in the presence of 4-OH-tamoxifen (10-8M). Knockdown was verified by Taq-man qRT-PCR prior to library preparation. RNA (10µg) was extracted using an Oligotex mRNA kit (Qiagen) as per manufacturer’s instructions (n=4). RNA was reverse transcribed followed by mRNA library preparation and sequencing based on a protocol outlined by Wilhelm et al., 2010. Sequencing was performed on an Illumina Genome Analyzer II (GAII) (54 million reads per sample on average). Overall design: Silencing of HOXC11 in tamoxifen resistant LY2 cells to identify putative HOXC11 target genes.

Publication Title

Prosaposin activates the androgen receptor and potentiates resistance to endocrine treatment in breast cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE75442
Spatial Differences in Gene Expression in the Bovine Oviduct
  • organism-icon Bos taurus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Bovine Gene 1.0 ST Array (bovgene10st)

Description

The aim of this study was to compare the transcriptome of the different regions of the oviduct between pregnant and cyclic heifers. After synchronizing crossbred beef heifers, those in standing oestrus (=Day 0) were randomly assigned to cyclic (non bred, n=6), or pregnant (artificially inseminated, n=11) groups. They were slaughtered on Day 3 and both oviducts from each animal were isolated and cut in half to separate ampulla and isthmus. Each portion was flushed to confirm the presence of an oocyte/embryo and was then opened longitudinally and scraped to obtain epithelial cells which were snap-frozen. Oocytes and embryos were located in the isthmus of the oviduct ipsilateral to the corpus luteum. Microarray analysis of oviductal cells revealed that proximity to the corpus luteum did not affect the transcriptome of the isthmus, irrespective of pregnancy status. However, 2287 genes were differentially expressed (P<0.01) between the ampulla and isthmus of the oviduct ipsilateral to the corpus luteum. Gene ontology revealed that the main biological processes overrepresented in the isthmus were synthesis of nitrogen, lipids, nucleotides, steroids and cholesterol as well as vesicle-mediated transport, cell cycle, apoptosis, endocytosis and exocytosis, whereas cell motion, motility and migration, DNA repair, calcium ion homeostasis, carbohydrate biosynthesis and regulation of cilium movement and beat frequency were overrepresented in the ampulla. In conclusion, large differences in gene expression were observed between the isthmus and ampulla that reflect morphological and functional characteristics of each segment.

Publication Title

Spatial differences in gene expression in the bovine oviduct.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70362
Gene Expression Profiling Identifies Interferon Signalling Molecules and IGFBP3 in Human Degenerative Annulus Fibrosus
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Low back pain is a major cause of disability especially for people between 20 and 50 years of age. As a costly healthcare problem, it imposes a serious socio-economic burden. Current surgical therapies have considerable drawbacks and fail to replace the normal disc in facilitating spinal movements and absorbing load. Therefore, the focus of regenerative medicine is on identifying biomarkers and signalling pathways to improve our understanding about the cascades of disc degeneration and allow for the design of specific therapies. We hypothesized that comparing microarray profiles from degenerative and non-degenerative discs will lead to the identification of dysregulated signalling and pathophysiological targets. Microarray data sets were generated from human annulus fibrosus cells and analysed using IPA ingenuity pathway analysis system. Gene expression values were validated by qRT-PCR, and respective proteins were identified by immunohistochemistry. Microarray analysis revealed 17 dysregulated molecular markers and various dysregulated cellular functions, including cell proliferation and inflammatory response, in the human degenerative annulus fibrosus. The most significant canonical pathway induced in degenerative annulus fibrosus was found to be the interferon signalling pathway. In conclusion, this study indicates interferon-alpha signalling pathway activation with IFIT3 and IGFBP3 up-regulation which may affect cellular function in human degenerative disc.

Publication Title

Gene Expression Profiling Identifies Interferon Signalling Molecules and IGFBP3 in Human Degenerative Annulus Fibrosus.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE33030
Effects of pregnancy and progesterone supplementation on endometrial gene expression in cattle
  • organism-icon Bos taurus
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

An increase in circulating progesterone (P4) concentrations is associated with increased pregnancy success in beef and dairy cattle. Our objective was to ascertain differential effects of elevated P4 concentrations following conception on endometrial gene expression in beef heifers on Days 5, 7, 13 and 16 of pregnancy, corresponding to the morula, blastocyst, elongation and maternal recognition of pregnancy stages, respectively. Estrus was synchronized in beef heifers (N=263). Two-thirds (N=140) were inseminated (Day 0), and all animals were randomly assigned to one of the following treatments: (i) pregnant, high P4; (ii) pregnant, normal P4; (iii) cycling, high P4; (iv) and cycling, normal P4. All high P4 groups received a P4 release intravaginal device (PRID) on Day 3 post-estrus/mating. Tissue was collected on Days 5, 7, 13 or 16 of the cycle or pregnancy, and pregnancy was confirmed by the presence of an appropriately developed embryo/conceptus. PRID insertion elevated (P<0.05) P4 concentrations from Day 3.5 to 8 compared with untreated animals and conceptus size was larger (P<0.05) in animals with elevated P4 on Days 13 and 16 compared with normal P4. Total RNA was extracted from predominantly intercaruncular endometria from the ipsilateral uterine horn. Samples from individual heifers were selected on the basis of their P4 profiles and gene expression was analyzed using bovine Affymetrix microarrays (N=5 per treatment per time point). Microarray data from analyses using Bioconductor GCRMA and Limma packages were subjected to a modified t-test and P-values were adjusted for multiple testing using the Benjamin and Hochberg false discovery rate method. Differentially expressed genes were selected on the basis of an adjusted P-value of <0.01. There were no detectable differences in gene expression in endometria from pregnant and cyclic heifers on Days 5, 7 and 13 post-estrus, but, the expression of 764 genes was altered due to the presence of the conceptus at maternal recognition of pregnancy (Day 16). On Days 5 and 7, elevated P4 in pregnant heifers, altered the expression of 36 and 124 genes respectively but on Days 13 and 16 there were relatively few DEG between high and normal P4 heifers (15 and 25). Of the genes that were differentially regulated by P4, the majority were unique to a specific day of the estrous cycle/early pregnancy. In conclusion, gene expression in endometria did not differ between pregnant and cycling heifers until Day 16 of pregnancy (i.e. the time of maternal recognition of pregnancy and production of interferon tau by conceptus trophectoderm); however, elevating P4 in early pregnancy programmed changes in gene expression in endometria that are hypothesized to impact early conceptus growth and development. Thus, on Days 5, 7 and 13 differential gene expression was affected by P4, but on Day 16 the conceptus primarily influenced gene expression in uterine endometria of heifers.

Publication Title

Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant?

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE4485
Global expression profiling of airway epithelial cells infected with Pseudomonas aeruginosa and the rsmA mutant
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Global expression profiling of airway epithelial cells infected with Pseudomonas aeruginosa and the rsmA mutant.

Publication Title

Pseudomonas aeruginosa infection of airway epithelial cells modulates expression of Kruppel-like factors 2 and 6 via RsmA-mediated regulation of type III exoenzymes S and Y.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23367
A non-classical LysR type transcriptional regulator PA2206 is required for an effective oxidative stress response in Pseudomonas aeruginosa.
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

LysR-type transcriptional regulators (LTTRs) are emerging as key circuit components in regulating microbial stress responses and are implicated in modulating oxidative stress in the human opportunistic pathogen Pseudomonas aeruginosa. The oxidative stress response encapsulates several strategies to overcome the deleterious effects of reactive oxygen species. However, many of the regulatory components and associated molecular mechanisms underpinning this key adaptive response remain to be characterised. Comparative analysis of publically available transcriptomic datasets led to the identification of a novel LTTR, PA2206, whose expression was altered in response to a range of host signals in addition to oxidative stress. PA2206 was found to be required for tolerance to H2O2 in vitro and lethality in vivo in the Zebrafish embryo model of infection. Transcriptomic analysis in the presence of H2O2 showed that PA2206 altered the expression of 58 genes, including a large repertoire of oxidative stress and iron responsive genes, independent of the master regulator of oxidative stress, OxyR. Contrary to the classic mechanism of LysR regulation, PA2206 did not autoregulate its own expression and did not influence expression of adjacent or divergently transcribed genes. The PA2214-15 operon was identified as a direct target of PA2206 with truncated promoter fragments revealing binding to the 5-ATTGCCTGGGGTTAT-3 LysR box adjacent to the predicted -35 region. PA2206 also interacted with the pvdS promoter suggesting a global dimension to the PA2206 regulon, and suggests PA2206 is an important regulatory component of P. aeruginosa adaptation during oxidative stress.

Publication Title

A non-classical LysR-type transcriptional regulator PA2206 is required for an effective oxidative stress response in Pseudomonas aeruginosa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35321
Gene expression changes with loss of H3f3b
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35301
Total Gene expression analysis of H3f3b conditional knockout MEFs
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Total gene expression analysis was performed on CRE induced conditional knockout E12.5 MEFs relative to GFP infected control MEFs. Intent was to analyze the role of H3f3b in overall gene expression.

Publication Title

Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP043043
Global analysis of ZNF217 chromatin occupancy in the breast cancer cell genome reveals an association with Eralpha
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Background: The ZNF217 gene, encoding a C2H2 zinc finger protein, is located at 20q13 and found amplified and overexpressed in greater than 20% of breast tumors. Current studies indicate ZNF217 drives tumorigenesis, yet the regulatory mechanisms of ZNF217 are largely unknown. Because ZNF217 associates with chromatin modifying enzymes, we postulate that ZNF217 functions to regulate specific gene signaling networks. Here, we present a large-scale functional genomic analysis of ZNF217, which provides insights into the regulatory role of ZNF217 in MCF7 breast cancer cells. Results: ChIP-seq analysis reveals that the majority of ZNF217 binding sites are located at distal regulatory regions associated with the chromatin marks H3K27ac and H3K4me1. Analysis of ChIPseq transcription factor binding sites shows clustering of ZNF217 with FOXA1, GATA3 and ERalpha binding sites, supported by the enrichment of corresponding motifs for the ERalpha-associated cisregulatory sequences. ERalpha expression highly correlates with ZNF217 in lysates from breast tumors (n=15), and ERalpha co-precipitates ZNF217 and its binding partner CtBP2 from nuclear extracts. Transcriptome profiling following ZNF217 depletion identifies differentially expressed genes co-bound by ZNF217 and ERalpha; gene ontology suggests a role for ZNF217-ERalpha in expression programs associated with ER+ breast cancer studies found in the Molecular Signature Database. Data-mining of expression data from breast cancer patients correlates ZNF217 with reduced overall survival in multiple subtypes. Conclusions: Our genome-wide ZNF217 data suggests a functional role for ZNF217 at ERalpha target genes. Future studies will investigate whether ZNF217 expression contributes to aberrant ERalpha regulatory events in ER+ breast cancer and hormone resistance Overall design: Differential RNA-seq profiling from triplicate biological replicates of MCF7 cells treated with scrambled siRNA or siZNF217.

Publication Title

Global analysis of ZNF217 chromatin occupancy in the breast cancer cell genome reveals an association with ERalpha.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact