refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 25 results
Sort by

Filters

Technology

Platform

accession-icon SRP008225
An Alternative Splicing Switch Regulates Embryonic Stem Cell Pluripotency and Reprogramming [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. However, the contribution of AS to the control of embryonic stem cell (ESC) pluripotency is not well understood. Here, we identify an evolutionarily conserved ESC-specific AS event that changes the DNA binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency including OCT4, NANOG, NR5A2 and GDF3, while concomitantly repressing genes required for ESC differentiation. Remarkably, this isoform also promotes the maintenance of ESC pluripotency and the efficient reprogramming of somatic cells to induced pluripotent stem cells. These results thus reveal that an AS switch plays a pivotal role in the regulation of pluripotency and functions by controlling critical ESC-specific transcriptional programs. Overall design: Exons 18 and 18b form a mutually exclusive splicing event. The FOXP1 (non-ES) isoform contains only exon 18 and not 18b, while the FOXP1-ES isoform contains only exon 18b and not 18. To investigate whether FOXP1 and FOXP1-ES control different sets of genes, we performed knockdowns using custom siRNA pools targeting FOXP1 exons 18 or 18b in undifferentiated H9 cells, followed by RNA-Seq profiling.

Publication Title

An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP073200
Multilayered control of alternative splicing regulatory networks by transcription factors (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulation events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one third of the new regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large ‘missing cache’ of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms. Overall design: RNA-Seq of N2A cells upon RNAi-mediated knockdown of Mbnl1/Mbnl2 or Nacc1, or control knockdown (1 replicate each), as well as upon knockdown of Srrm4 or Zfp871, or control knockdown (2 replicates each) vast-tools.AltSplicing_Mbnl.Nacc1.tab: Primary vast-tools output for Mbnl and Nacc1 knockdowns vast-tools.AltSplicing_Srrm4.Zfp871.tab: Primary vast-tools output for Srrm4 and Zfp871 knockdowns AltSplicing_Mbnl.Nacc1.tab: Filtered PSI values and differential AS annotation for Mbnl and Nacc1 knockdowns AltSplicing_Srrm4.Zfp871.tab: Filtered PSI values and differential AS annotation for Srrm4 and Zfp871 knockdowns Expression_Mbnl.Nacc1.tab: Raw and read counts per gene, normalized expression and fold-change for Mbnl and Nacc1 knockdowns Expression_Srrm4.Zfp871.tab: Raw read counts per gene, normalized expression and fold-change (edgeR analysis) for Srrm4 and Zfp871 knockdowns

Publication Title

Multilayered Control of Alternative Splicing Regulatory Networks by Transcription Factors.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE32178
Identification of a Myometrial Molecular Profile for Dystocic Labor
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study identifies a transciptomic myometrial profile associated with dystocia in spontanous nulliparous term labour

Publication Title

Identification of a myometrial molecular profile for dystocic labor.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP136263
Human Cellular Model of Hypoxic Brain Injury of Prematurity
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Extremely premature birth is associated with an increased risk for hypoxic brain injury due to lung immaturity and this results in severe long-term neurodevelopmental impairments. The susceptible cell types in the cerebral cortex at this critical developmental time point and the molecular mechanisms underlying associated gray matter defects in premature infants are not known. Here, we used a human three-dimensional (3D) cellular system to study the effect of changes in oxygen tension on the mid-gestation human cerebral cortex. We identified specific defects in intermediate progenitors, a cortical cell type associated with the expansion of the human cerebral cortex, and show that these are related to the unfolded protein response (UPR) and cell cycle changes. Moreover, we verify these findings in human primary cortical tissue and demonstrate that a modulator of the UPR pathway can prevent the reduction in intermediate progenitors following hypoxia. We anticipate that this human cellular platform will be useful in studying other environmental and genetic factors underlying brain injury in premature infants. We investigated the transcriptional changes associated with exposure to <1% O2 by performing RNA sequencing. Overall design: RNA-seq, 101 bp singlepaired-end reads; minimum of 40 million high quality reads per sample) at 24 and 48 hours (middle and end of <1% O2 for hypoxic condition), as well as after 72 hours of re-oxygenation at 21% O2.

Publication Title

Human 3D cellular model of hypoxic brain injury of prematurity.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE68857
Transcriptional effects of CTGF inhibition in a transgenic mouse model of dilated cardiomyopathy
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Cardiac structural changes associated with dilated cardiomyopathy (DCM) include cardiomyocyte hypertrophy and myocardial fibrosis. Connective Tissue Growth Factor (CTGF) has been associated with tissue remodeling and is highly expressed in failing hearts. To test if inhibition of CTGF would alter the course of cardiac remodeling and preserve cardiac function in the protein kinase C (PKC) mouse model of DCM. Transgenic mice expressing constitutively active PKC in cardiomyocytes develop cardiac dysfunction that was evident by 3 months of age, and that progressed to heart failure, cardiac fibrosis, and increased mortality. Beginning at 3 months of age, mice were treated with an antibody to CTGF (FG-3149) or non-immune IgG control antibody for an additional 3 months. CTGF inhibition significantly improved left ventricular (LV) systolic and diastolic function in PKC mice, and slowed the progression of LV dilatation. Using gene arrays and quantitative PCR, the expression of many genes associated with tissue remodeling were elevated in PKC mice, but significantly decreased by CTGF inhibition, however total collagen deposition was not attenuated. The observation of significantly improved LV function by CTGF inhibition in PKC mice suggests that CTGF inhibition may benefit patients with DCM.

Publication Title

Connective tissue growth factor regulates cardiac function and tissue remodeling in a mouse model of dilated cardiomyopathy.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE58056
Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This file contains gene microarray data from FACS purified mouse high endothelial cells and capillary endothelial cells from peripheral lymph nodes, mesenteric lymph nodes, and Peyers patches. The data will allow for better understanding of the specialization of high endothelial venules (HEV) and their role in lymphocyte recruitment from the blood; the tissue-specific differentiation of lymphoid tissue vasculature; and the specialized features of capillary vs. post-capillary endothelium, including differences in signaling pathways, adhesive properties and mechanisms of hemostasis.

Publication Title

Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9444
Sleep deprivation and the brain
  • organism-icon Mus musculus
  • sample-icon 131 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Homer1a is a core brain molecular correlate of sleep loss.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9442
Molecular correlates of sleep deprivation in the brain of three inbred mouse strains in an around-the-clock experiment
  • organism-icon Mus musculus
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

These studies adress differential changes in gene expression between sleep deprived and control mice. We profiled gene expression at four time points across the 24H Light/Dark cycle to take into account circadian influences and used three different inbred strains to understand the influence of genetic background.

Publication Title

Homer1a is a core brain molecular correlate of sleep loss.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9441
The effect of sleep deprivation on gene expression in the brain and the liver of three inbred mouse strains
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

These studies adress differential changes in gene expression between 6h sleep deprived and control mice in the brain and the liver. We profiled gene expression in three different inbred strains to understand the influence of genetic background.

Publication Title

Homer1a is a core brain molecular correlate of sleep loss.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9443
Gene expression in brain Homer1a-expressing cells after sleep deprivation
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To gain insight into the molecular changes of sleep need, this study addresses gene expression changes in a subpopulation of neurons selectively activated by sleep deprivation. Whole brain expression analyses after 6h sleep deprivation clearly indicate that Homer1a is the best index of sleep need, consistently in all mouse strains analyzed. Transgenic mice expressing a FLAG-tagged poly(A)-binding protein (PABP) under the control of Homer1a promoter were generated. Because PABP binds the poly(A) tails of mRNA, affinity purification of FLAG-tagged PABP proteins from whole brain lysates, is expected to co-precipitate all mRNAs from neurons expressing Homer1a. Three other activity-induced genes (Ptgs2, Jph3, and Nptx2) were identified by this technique to be over-expressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.

Publication Title

Homer1a is a core brain molecular correlate of sleep loss.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact