IL-10 production by Th17 cells is critical for limiting autoimmunity and inflammatory responses. Gene array analysis on Stat6 and T-bet double deficient Th17 cells identified the Th2 transcription factor c-Maf to be synergistically up-regulated by IL-6 plus TGFbeta, and associated with Th17 IL-10 production. Both c-Maf and IL-10 induction during Th17 polarization depended on Stat3, but not Stat6 or Stat1, and mechanistically differed from IL-10 regulation by Th2 or IL-27 signals. TGFbeta was also synergistic with IL-27 to induce c-Maf, and induced Stat1 independent IL-10 expression in contrast to IL-27 alone. Retroviral transduction of c-Maf was able to induce IL-10 expression in Stat6 deficient CD4 and CD8 T cells, and c-Maf directly transactivated IL-10 gene expression through binding to a MARE motif in the IL-10 promoter. Together, these data reveal a novel role for c-Maf in regulating T effector development, and suggest that TGFbeta may antagonize Th17 immunity by IL-10 production through c-Maf induction.
c-Maf regulates IL-10 expression during Th17 polarization.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice.
Specimen part
View SamplesThe preferential localization of some neoplasms, such as serrated polyps, in specific areas of the intestine suggests that non-genetic factors may be important for their development. To test this hypothesis, we took advantage of transgenic mice that expressed HB-EGF throughout the intestine, but develop serrated polyps only in the cecum.
Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice.
Specimen part
View SamplesSphingosine 1-phosphate (S1P) influences T cell migration into and out of secondary lymphoid organs; however, its mechanism of action remains uncertain. Our previous research shows that agonism of the S1P receptor S1P1 inhibits the egress of T lymphocytes from the peripheral tissues into afferent lymphatics. To better define the mechanism of inhibition, we developed an in vitro model to characterize T cell transendothelial migration across lymphatics. Two commercially available endothelial cell lines (MS-1 and SVEC4-10) were characterized by flow cytometry, real time RT-PCR, and Affymetrix Gene Array. These cell lines were grown to confluent monolayers in transwell systems, on either the upper or lower surface of the transwell insert. T cells were isolated from the spleens of (C57BL/6 x C3H/HeJ)F1, S1P1 KO, or S1P1 KO littermate controls, and either treated with the S1P receptor modulator FTY720 or left untreated. Cells were migrated to chemokines (CCL19 or CCL21) for 4 hours, and migration quantified. Flow cytometry, RT-PCR, and array results identified MS-1 as a blood vascular endothelial cell line, expressing high levels of CD31, CD34, and ICAM-1 as well as other endothelial cell markers; while SVEC4-10 closely resemble a lymphatic phenotype, expressing LYVE-1, VEGFR-3, and podoplanin. T cells efficiently migrate across MS-1, whether grown on the upper or lower surface; whereas migration across SVEC4-10 only occurs when cells are grown on the lower surface of the transwell (iSVEC), recapitulating basal (abluminal) to apical (luminal) migration that occurs in vivo. FTY720 inhibits T cell migration across iSVEC, but not across MS-1. Inhibition is due to drug effects only on T cells but not endothelial cells. S1P1 KO T cells treated with FTY720 are not inhibited in their migration across the iSVEC line, showing that S1P1 stimulation is required for migration inhibition. The in vitro model developed here is the first to use endothelial cell lines to analyze the regulation of T cell migration across lymphatic endothelium. The results show there is directional control of T cell migration across lymphatic cells, such that T cells only migrate from a basal to apical direction. Agonism of S1P1 specifically inhibits migration, while absence of the receptor does not. These findings have important implications for the use of S1P1 agonists in transplantation, as inhibition of cell entry into afferent lymphatics and lymph nodes could impede the development of graft rejection.
The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics.
Specimen part
View SamplesWhile the existence of intestinal epithelial stem cells (IESCs) has been well established, their study has been limited due to the inability to isolate them. Previous work has utilized side population (SP) sorting of the murine small intestinal mucosa to isolate a viable fraction of cells enriched for putative IESCs. We have used microarray analyses to characterize the molecular features of this potential stem cell population.
Molecular properties of side population-sorted cells from mouse small intestine.
No sample metadata fields
View SamplesWe applied a 5''RNA-seq methodology to assess gene and differential isoform expression in striated muscle tissues extracted from adult wild-type mice. Overall design: 5''RNA-seq analysis of transcriptomes from mouse soleus, tibialis anterior (TA), diaphragm and left ventricle myocardial tissues. Three biological replicates per tissue were pooled into a single sequencing run. 5''RNA-seq methodology consists of enhanced sequencing of 5'' ends and computational assessment of changes at start-sites of genes.
Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle.
Sex, Specimen part, Cell line, Subject
View SamplesBalb/c donor hearts were transplanted into C57/BL6 recipients as previously described (Corry et al, 1973). Recipient mice were treated with 250g anti-CD40L mAb for tolerance induction on days 0, 2, and 4 as previously described (Jiang et al., 2011) or left untreated. On day 5 after transplantation graft infiltrating myeloid subsets were isolated using fluorescence activated cell sorting (FACS). Affymetrix Mouse Gene arrays were run in triplicate with the samples of interest. Raw CEL file data from Affymetrix Expression Console were background corrected, normalized, and summarized using RMA.
DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance.
Treatment
View SamplesMicroglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A?-plaques in human Alzheimer’s disease brain. This is mediated by a switch from a (M0)-homeostatic to (MGnD)-neurodegenerative phenotype following phagocytosis of apoptotic neurons via the TREM2-APOE pathway. TREM2 induces APOE signaling which is a negative regulator of the transcription program in M0-homeostatic microglia. Targeting the TREM2-APOE pathway restores the M0-homeostatic signature of microglia in APP-PS1 and SOD1 mice and prevents from neuronal loss in an acute model of neurodegeneration. In SOD1 mice, TREM2 regulates MGnD in a gender-dependent manner. APOE-mediated MGnD microglia lose their tolerogenic function. Taken together, our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target to restore homeostatic microglia. Overall design: Illumina NextSeq500 was used to identify disease-associated vs. homeostatic molecular microglia signature in microglia in different disease models and transgenic models. Bulk microglia (1,000 cells/sample) FCRLS+ sorted microglia.
The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases.
Specimen part, Cell line, Subject
View SamplesMicroglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A?-plaques in human Alzheimer’s disease brain. This is mediated by a switch from a (M0)-homeostatic to (MGnD)-neurodegenerative phenotype following phagocytosis of apoptotic neurons via the TREM2-APOE pathway. TREM2 induces APOE signaling which is a negative regulator of the transcription program in M0-homeostatic microglia. Targeting the TREM2-APOE pathway restores the M0-homeostatic signature of microglia in APP-PS1 and SOD1 mice and prevents from neuronal loss in an acute model of neurodegeneration. In SOD1 mice, TREM2 regulates MGnD in a gender-dependent manner. APOE-mediated MGnD microglia lose their tolerogenic function. Taken together, our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target to restore homeostatic microglia. Overall design: Illumina NextSeq500 was used to identify disease-associated vs. homeostatic molecular microglia signature in microglia in different disease models and transgenic models. Bulk microglia (1,000 cells/sample) FCRLS+ sorted microglia.
The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases.
Sex, Specimen part, Cell line, Subject
View SamplesCumulus-oocyte complexes were isolated a seperate time-points to generate temporal complexes. Targets from two biological replicates at each time point (0h, 8h, 16h post-hCG treatment) were generated and the expression profiles were determined using Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. Comparisons between the sample groups allow the identification of genes with temporal expression patterns.
Gene expression profiles of cumulus cell oocyte complexes during ovulation reveal cumulus cells express neuronal and immune-related genes: does this expand their role in the ovulation process?
No sample metadata fields
View Samples