refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 33 results
Sort by

Filters

Technology

Platform

accession-icon GSE69029
CD138+ expression and genomic profile obtained from newly diagnosed Multiple Myeloma patients up-front treated with VTD induction therapy
  • organism-icon Homo sapiens
  • sample-icon 118 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The genetic and genomic background of multiple myeloma patients achieving complete response after induction therapy with bortezomib, thalidomide and dexamethasone (VTD).

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE68871
Expression data from BM-CD138+, obtained from newly diagnosed Multiple Myeloma patients [response to VTD therapy]
  • organism-icon Homo sapiens
  • sample-icon 118 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The prime focus of the current therapeutic strategy for Multiple Myeloma (MM) is an early and deep tumour burden reduction; this characterizes and defines the complete response (CR). To date, no description of the characteristics of the plasma cells (PC) prone to achieve CR has been reported. This study aimed at the molecular characterization of PC derived from MM patients who achieved CR after bortezomib-thalidomide-dexamethasone (VTD) first line therapy.

Publication Title

The genetic and genomic background of multiple myeloma patients achieving complete response after induction therapy with bortezomib, thalidomide and dexamethasone (VTD).

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE39925
Transcriptional characterization of a prospective series of primary plasma cell leukemia revealed genes associated with tumor progression and poorest outcome
  • organism-icon Homo sapiens
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Plasma cell leukemia (PCL) is a rare form of plasma cell dyscrasia that presents either as a progression of previously diagnosed multiple myeloma (MM), namely secondary PCL (sPCL), or as the initial manifestation of disease, namely primary PCL (pPCL). Although presenting signs and symptoms include those seen in MM, pPCL is characterized by several aspects that clearly define more aggressive course. To provide insights into the biology of pPCL, we have investigated the transcriptional profiles of a cohort of 21 newly-diagnosed, homogeneously treated pPCL patients included in a multicenter prospective clinical trial. All but one pPCL had one of the main IGH translocations, whose associated transcriptional signatures resembled those observed in MM. A 503-gene signature was identified that distinguished pPCL from MM, from which emerged 28 genes whose trend in expression levels was found associated with the progressive stages of plasma cell dyscrasia in a large dataset of cases from multiple institutions, including samples from normal donors throughout PCL. The transcriptional pattern of the pPCL series was then evaluated in association with outcome. Three genes were identified having expression levels correlated with response to the first-line treatment with lenalidomide/dexamethasone, whereas a 27-gene signature was identified associated with overall survival independently of molecular alterations, hematological parameters and renal function. Overall, our data contribute to a fine dissection of pPCL and may provide novel insights into the molecular definition of a subgroup of high-risk pPCL.

Publication Title

Transcriptional characterization of a prospective series of primary plasma cell leukemia revealed signatures associated with tumor progression and poorer outcome.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE39383
Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with transcriptional Profile alterations
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mapping 250K Nsp SNP Array (mapping250knsp), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE39381
Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with transcriptional Profile alterations (Expression)
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Mapping 250K Nsp SNP Array (mapping250knsp)

Description

Primary plasma cell leukaemia (pPCL) is a rare, yet aggressive form of de novo plasma cell tumor, distinguished from secondary PCL (sPCL) which represents a leukemic transformation of pre-existing multiple myeloma (MM). Here, we performed a comprehensive molecular analysis of a prospective series of pPCLs by means of FISH, single nucleotide polymorphism (SNP) array and gene expression profiling (GEP). IGH@ translocations were identified in 87% of pPCL cases, with prevalence of t(11;14) (40%) and t(14;16) (30.5%), whereas the most frequently altered regions were located at 1p (38%), 1q (48%), 6q (29%), 8p (42%), 13q (74%), 14q (71%), 16q (53%) and 17p (35%). A relevant finding of our study was the identification of a minimal biallelical deletion (1.5 Mb) in 8p21.2 encompassing the putative tumor suppressor gene PPP2R2A that was significantly down-regulated in deleted cases. Mutations of TP53 were identified in 4 cases all but one associated with a monoallelic deletion of the gene, whereas activating mutations of BRAF occurred in one case and were absent for N- and K-RAS. To evaluate the influence of allelic imbalances in transcriptional expression we performed an integrated genomic analysis with GEP data, showing a significant dosage effect of genes involved in transcription, translation, methyltransferases activity, apoptosis as well as Wnt and NF-kB signaling pathways. Overall, we provide a compendium of genomic alterations in a prospective series of pPCLs which may contribute to our understanding of this particular form of plasma cell dyscrasia and to better elucidate the mechanisms of tumor progression in MM.

Publication Title

Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP178543
Single-cell RNA sequencing on breast cancer cells enriched for cancer stem cell properties using functional assays
  • organism-icon Homo sapiens
  • sample-icon 121 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We used mammosphere formation assay and label-retention assay as functional cellular approaches to enrich for cells with different degree of cancer stem cell properties in the breast cancer cell line MDA-MB-231 and performed single-cell RNA sequencing Overall design: Single cells from three different populations: 30 cells from G1 cell cycle phase cultured in adherent conditions, 46 cells with low proliferation cultured in non-adherent conditions (mammosphere assasy), 45 cells with high proliferation cultured in non-adherent conditions (mammosphere assay)

Publication Title

Erratum: Identification of Breast Cancer Stem Cell Related Genes Using Functional Cellular Assays Combined With Single-Cell RNA Sequencing in MDA-MB-231 Cells.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE36778
Effect of Tgfbr2 disruption on gene expression in the aorta of Fbn1 wild-type and Fbn1C1039G mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to characterize the global changes in gene expression within the ascending aorta of mice due to conditional disruption of TGF- signaling in smooth muscle and/or due to heterozygous fibrillin-1 mutation.

Publication Title

Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE87842
Role of Gq/11 and G12/13 signalling in Type II alveolar epithelial cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We have used microarrays to identify individual genes and pathways regulated by Gq/11 or G12/13 signalling in type II alveolar epithelial cells isolated from the lungs of knockout mice.

Publication Title

Loss of epithelial Gq and G11 signaling inhibits TGFβ production but promotes IL-33-mediated macrophage polarization and emphysema.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70451
Genes differentially expressed between Bmi1-overexpressing and empty vector control neural stem/progenitor cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Neural stem/progenitor cells were isolated from the lateral ventricle wall of 4-6 week-old CD1 mice and grown as neurospheres under low density culture conditions. Test cells were transduced with bicistronic retroviral constructs for the over-expression of Bmi1 together with eGFP, and control cells were transduced with an empty vector construct expressing eGFP only. To identify genes, which are regulated by BMI1 in neural stem/progenitor cells, the gene expression profiles of neurosphere cells over-expressing Bmi1 were compared empty vector control cells using Affymetrix Gene mouse ST1.0 arrays

Publication Title

The putative tumor suppressor gene EphA7 is a novel BMI-1 target.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP075966
Transcription control by the ENL YEATS domain in acute leukemia [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Recurrent chromosomal translocations involving the mixed lineage leukemia gene (MLL) give rise to highly aggressive acute leukemia associated with poor clinical outcomes. The preferential involvement of chromatin-associated factors in MLL rearrangements belies a dependency on transcriptional control. To identify new targets for therapeutic development in MLL, we performed a genome-scale CRISPR-Cas9 knockout screen in MLL-AF4 leukemia. Among validated targets, we identified the transcriptional regulator, ENL, as an unrecognized dependency particularly indispensable for proliferation. To explain the mechanistic role for ENL in leukemia pathogenesis and the dynamic role in transcription control, we pursued a chemical genetic strategy utilizing targeted protein degradation. ENL loss suppresses transcription initiation and elongation genome-wide, with pronounced effects at genes featuring disproportionate ENL load. Importantly, ENL-dependent leukemic growth was contingent upon an intact YEATS epigenomic reader domain. These findings reveal a novel dependency in acute leukemia and a first mechanistic rationale for disrupting YEATS domains in disease. Overall design: RNA-seq in MV4;11 (Cas9; ENL-FKBP(F36V); ENL -/-) cells with dTAG-13 and EPZ-5676 treatment

Publication Title

Transcription control by the ENL YEATS domain in acute leukaemia.

Sample Metadata Fields

Cell line, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact