Hyperhomocysteinemia (HHcy) causes cardiovascular dysfunction and is associated with many complications during pregnancy related to reduced NO bioactivity. The mechanisms of HHcy on the NO-dependent control of myocardial metabolism was compared with L-NAME, which directly inhibits NO bioavailability, treated animals.
Long-term methionine-diet induced mild hyperhomocysteinemia associated cardiac metabolic dysfunction in multiparous rats.
Sex, Specimen part
View SamplesThere is cardiac dysfunction in male eNOS (-/-) with age and 50% mortality at 21M. It was of interest to investigate the gene expression profile of aged eNOS (-/-) male in comparison to (+/+) in order to explore the genetic markers and molecular mechanisms leading to heart failure. RNA was extracted from the left ventricle from male (-/-) (n=3) and (+/+) (n=4) at the age of 21M.
Transcriptional basis for exercise limitation in male eNOS-knockout mice with age: heart failure and the fetal phenotype.
No sample metadata fields
View SamplesGobal expression analysis in four somatic tissues (brain, liver, kidney and muscle) of adult 40,XX and 39,XO mice with the aim of identifying which genes are expressed from both X chromosomes as well as those genes deregulated in X chromosome monosomy.
Transcriptional changes in response to X chromosome dosage in the mouse: implications for X inactivation and the molecular basis of Turner Syndrome.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication.
Sex, Specimen part, Cell line, Treatment
View SamplesTitle: Array-based gene expression, CGH and tissue data define a 12q24 gain in neuroblastic tumors with prognostic implication.
Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication.
Specimen part, Cell line, Treatment
View SamplesEndothelial cell (EC) therapy may promote vascular growth or reendothelization in a variety of disease conditions. However, the production of a cell therapy preparation containing differentiated, dividing cells presenting typical EC phenotype, functional properties and chemokine profile is challenging. We focused on comparative analysis of seven small molecule-mediated differentiation protocols of ECs from human induced pluripotent stem cells. Differentiated cells showed a typical surface antigen pattern of ECs as characterized with flow cytometry analysis, functional properties, such as tube formation and ability to uptake acetylated LDL. Gene expression analysis by RNA sequencing revealed an efficient silencing of pluripotency genes and upregulation of genes related to cellular adhesion during differentiation. In addition, distinct patterns of transcription factor expression were identified during cellular reprogramming providing targets for more effective differentiation protocols in the future. Altogether, our results suggest that the most optimal EC differentiation protocol includes early inhibition of Rho-associated coiled-coil kinase and activation of cyclic adenosine monophosphate signaling, and inhibition of transforming growth factor beta signaling after mesodermal stage. These findings provide the first systematic characterization of the most potent signalling factors and small molecules used to generate ECs from human induced pluripotent stem cells. Consequently, this work improves the existing EC differentiation protocols and opens up new avenues for controlling cell fate for regenerative EC therapy. Overall design: Comparison of the effects of signalling factors and small molecules on endothelial cell differentiation from induced pluripotent stem cells using RNA-Seq. Following small molecules and growth factors were used in different combinations and time courses: 10 uM TGFß-inhibitor SB431542, 10 uM ROCK-inhibitor Y-27632, 20 ng/ml recombinant human BMP-4 and 0,25 mM 8-Br-cAMP. In all groups without TGFß-inhibitor at day 1 in the differentiation, it was added at day 4. In those groups with BMP-4 at day 1, it was removed at day 4. Differentiating ECs were passaged every 4-6 days using Accutase.
Temporal Dynamics of Gene Expression During Endothelial Cell Differentiation From Human iPS Cells: A Comparison Study of Signalling Factors and Small Molecules.
Specimen part, Cell line, Subject
View SamplesHerpesviruses are known to encode micro (mi)RNAs and to use them to regulate the expression of both viral and cellular genes. The genome of Kaposis sarcoma herpesvirus (KSHV) encodes a cluster of twelve miRNAs, which are abundantly expressed during both latency and lytic infection. Relatively few cellular targets of KSHV miRNAs are known. Here, we used a microarray expression profiling approach to analyze the transcriptome of both B lymphocytes and endothelial cells stably expressing KSHV miRNAs and monitor the changes induced by the presence of these miRNAs. We generated a list of potential cellular targets by looking for miRNA seed-match-containing transcripts that were significantly down regulated upon KSHV miRNAs expression. Interestingly, the overlap of putative targets identified in B lymphocytes and endothelial cells was minimal, suggesting a tissue-specific target-regulation by viral miRNAs. Among the putative targets, we identified caspase 3, a critical factor for the control of apoptosis, which we validated using luciferase reporter assays and western blotting. In functional assays we obtained further evidence that KSHV miRNAs indeed protect cells from apoptosis.
Kaposi's sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis.
Cell line
View SamplesA specialized population of memory CD8+ T-cells resides in the epithelium of the respiratory tract to maintain protection against recurring infections. These cells express CD69 and the integrin 7 (CD103) and correspond to tissue resident memory T-cells (TRM) also described in intestine, liver and brain. A less well characterized population of CD103- CD8+ T-cells also resides in lungs and expresses markers characteristic of effector memory T-cells (TEM). We determined the transcriptional profiles of these memory CD8+ T-cell subsets retrieved from human lung resection samples and compared these with corresponding T-cell populations from peripheral blood of the same individuals. Our results demonstrate that each of the populations exhibits a distinct transcriptional identity. We found that the lung environment has a major impact on gene expression profiles. Thus, transcriptomes from CD103+ and CD103- subsets from lungs are much more resemblant to one another than to those from CD103+ or CD103- memory CD8+ T-cells from blood. TRM express specific sets of chemokine receptors, in accordance with their unique migratory properties. Furthermore, these cells constitutively express cytokine and cytotoxic genes for immediate effector function and chemokines to attract auxiliary immune cells. At the same time, multiple genes encoding inhibitory regulators are also expressed. This suggests that rapid ability to unleash effector functions is counterbalanced by programmed restraint, a combination that may be critical in the exposed but delicate tissue of the lung. Comprehensive sets of transcription factors were identified that characterize the memory CD8+ populations in the lungs. Prominent among these were components of the Notch pathway. Using mice genetically lacking expression of the NOTCH1 and NOTCH2 receptors in T-cells, we demonstrated that Notch controls both the number of lung TRM as well as the function of lung TEM. Our data illustrate the adaptation of lung resident T-cells to the requirements of the respiratory epithelial environment. Defining the molecular imprinting of these cells is important for rational vaccine design and may help to improve the properties of T-cells for adoptive cellular therapy.
Programs for the persistence, vigilance and control of human CD8<sup>+</sup> lung-resident memory T cells.
Specimen part, Subject
View SamplesKaposi sarcoma is the most common cancer in AIDS patients and is typified by red skin lesions.The disease is caused by the KSHV virus (HHV8) and is recognisable by its distinctive red skin lesions. The lesions are KSHV infected spindle cells expressing markers of the lymphatic endothelial and blood vessel endothelial cells as well as other cell types. The effects of KSHV infection of lymphatic endothelial cells (LEC) cultured in 3D matrix for three days were assayed using Affymetrix hgu133plus2 chips.
KSHV-initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent lymphatic endothelial-to-mesenchymal transition.
Specimen part
View SamplesCell lines derived from NK cell neoplasms were characterized using RNA sequencing and high-throughput drug sensitivity profiling to identify therapeutically actionable drivers in malignant NK cells. Overall design: RNA sequencing data was obtained from natural killer and T cell lines for gene expression profiling and mutation detection in parallel with drug sensitivity profiling. The ''NK_cell_line_GEO_drug_sensitivity.txt'' contains drug sensitivity scores of cell lines screened using 459 compounds. Breifly, compounds were preprinted on 384-well plates (Corning) in five different concentrations covering a 10,000-fold concentration range with an acoustic liquid handling device (Echo 550, Labcyte Inc.) and dissolved in 5 l culture medium on a shaker for 10 min. 20 l of single-cell suspension of cell lines (3,000 cells per well) were dispensed using Multi-Drop Combi peristaltic dispenser (Thermo Scientific). Plates were incubated at 37 C and 5% CO2 for 72 h after which cell viability was measured using CellTiter-Glo 2.0 reagent (Promega) according to the manufacturer s instructions with a Pherastar FS plate reader (BMG Labtech). Cell viability luminescence data were normalized to DMSO-only wells (negative control) and 100 mM benzethonium chloride-containing wells (positive control). The data were quantified using the drug sensitivity score (DSS) (Yadav et al., Scientific Reports 2014).
Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target.
Specimen part, Cell line, Subject
View Samples