This SuperSeries is composed of the SubSeries listed below.
An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma.
Specimen part, Cell line
View SamplesGlioblastoma (GBM) is thought to be driven by a sub-population of cancer stem cells (CSCs) that self-renew and recapitulate tumor heterogeneity, yet remain poorly understood. Here we present a comparative epigenomic analysis of GBM CSCs that reveals widespread activation of genes normally held in check by Polycomb repressors. These activated targets include a large set of developmental transcription factors (TFs) whose coordinated activation is unique to the CSCs. We demonstrate that a critical factor in the set, ASCL1, activates Wnt signaling by repressing the negative regulator DKK1. We show that ASCL1 is essential for maintenance and in vivo tumorigenicity of GBM CSCs. Genomewide binding profiles for ASCL1 and the Wnt effector LEF1 provide mechanistic insight and suggest widespread interactions between the TF module and the signaling pathway. Our findings demonstrate regulatory connections between ASCL1, Wnt signaling and collaborating TFs that are essential for the maintenance and tumorigenicity of GBM CSCs.
An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma.
Cell line
View SamplesWe show that EWS-FLI1, an aberrant transcription factor responsible for the pathogenesis of Ewing sarcoma, reprograms gene regulatory circuits by directly inducing or directly repressing enhancers. At GGAA repeats, which lack regulatory potential in other cell types and are not evolutionarily conserved, EWS- FLI1 multimers potently induce chromatin opening, recruit p300 and WDR5, and create de novo enhancers. GGAA repeat enhancers can loop to physically interact with target promoters, as demonstrated by chromosome conformation capture assays. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors and abrogating p300 recruitment. Overall design: Ewing sarcoma cell lines (A673 and SKNMC) were analyzed by RNA-seq. EWS-FLI1 was depleted by infection with lentiviral shRNAs (shFLI1 and shGFP control).
EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma.
No sample metadata fields
View SamplesAnalysis of T-cells lacking the proprotein convertase furin. Proprotein convertases promote the proteolytic maturation of proproteins. Furin is induced in activated T-cells. Results provide insight into the function of furin in T-cells.
Proprotein convertase FURIN regulates T cell receptor-induced transactivation.
Age, Treatment
View SamplesClinically isolated syndrome (CIS) refers to the earliest clinical manifestation of multiple sclerosis (MS). Currently there are no prognostic biological markers that accurately predict conversion of CIS to clinically definite MS (CDMS). Furthermore, the earliest molecular events in MS are still unknown. We used microarrays to study gene expression in nave CD4+ T cells from 37 CIS patients at time of diagnosis and after one year. Supervised machine-learning methods were used to build predictive models of disease conversion. We identified 975 genes whose expression segregated CIS patients into 4 distinct subgroups. A subset of 108 genes further discriminated patients from one of these (group#1) from other CIS patients. Remarkably, 92% of patients from group #1 converted to CDMS within 9 months. Consistent downregulation of TOB1, a critical regulator of cell proliferation, was characteristic of group #1 patients. Decreased TOB1 expression at the RNA and protein levels was also confirmed in experimental autoimmune encephalomyelitis (EAE). Finally, a genetic association was observed between TOB1 variation and MS progression in an independent cohort. These results indicate that CIS patients at high risk of conversion have impaired regulation of T cell quiescence resulting in earlier activation of pathogenic CD4+ cells.
Abrogation of T cell quiescence characterizes patients at high risk for multiple sclerosis after the initial neurological event.
No sample metadata fields
View SamplesA genetic study of the PRF1 gene has shown association of several polymorphisms with multiple sclerosis (MS). Haplotype analysis identified risk haplotypes strongly associated with male patients having the primary-progressive form of MS (PPMS). Gene expression microarrays were performed in 10 male PPMS patients carrying the risk (n=6) and protective haplotypes (n=4) in order to identify pathways associated with the risk haplotypes. Pathway analysis revealed overrepresentation of the cell killing gene ontology category among down-regulated genes in patients carrying risk haplotypes compared with patients carrying protective haplotypes.
Gender-associated differences of perforin polymorphisms in the susceptibility to multiple sclerosis.
Sex, Specimen part, Disease
View SamplesOne of our new major finding among the genes that contributes to MS susceptibility is ICSBP1. The so called disease modifying therapies like interferon-beta (IFN-), possibly acting on the peripheral T-cells, reduce the disease activity and the clinical progression, with a MRI-detectable effect in preventing lesion burden and cerebral atrophy development in RR-MS. It suggests a critical role of peripheral blood mononuclear cells (PBMCs) immune response and modulation in developing inflammation in the brain. We tested the hypothesis that the genetic effect of the susceptible allele ICSBP1 can impact the gene expression profile of molecules belonging to the interferon pathway. We therefore interrogated the PBMC for changes in gene expression profile. We correlate those changes with the minor allele frequency for ICSBP1, performing independent quantitative trait analysis for each treatment category. Expression Quantitative Trait Loci Association with a p value < 0.05 have been used in follow up analysis. The regression coefficient of the Quantitative trait association represents the degree of correlation between the gene expression for each interrogated target gene and the minor allele frequency of the SNP for our gene of interest. This coefficient has been used as input in the subsequent Gene Set Enrichment Analysis performed in a pre-ranked approach. The resulting GSEA-SNP method rests on the assumption that SNPs underlying a disease phenotype might affect genes constituting a signaling pathway or genes with a common regulation. Therefore, GSEA-SNP can facilitate the identification of pathways or of underlying biological mechanisms.
Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci.
Specimen part
View Samples