We discovered a rare missense mutation in NR1H4 (R436H), which encodes the farnesoid X receptor (FXR), associating with lower levels of total cholesterol in the Icelandic population. To explore the effects of R436H we used CRISPR-Cas9 to generate homozygous NR1H4 R436H and NR1H4 knockout human iPSC lines which we differentiated to hepatocytes. Hepatocytes were treated with an FXR agonist for 24 hours and transcript abundance measured by RNA-seq. The global response to FXR activation in NR1H4 R436H cells was very similar to that of wild-type cells showing that it is not a loss-of-function mutation. However, we did observe subtle gene expression differences compatible with an effect on lipids when we compared R436H agonist treated hepatocytes to wild-type agonist treated hepatocytes. Overall design: RNA-seq was performed on wild-type, NR1H4 knockout and NR1H4 R436H iPSC-derived hepatocytes treated with FXR agonist GW4064.
Predicted loss and gain of function mutations in ACO1 are associated with erythropoiesis.
Specimen part, Treatment, Subject
View SamplesThe aim of the experiment was to identify genes rapidly responding at their expression level to enhanced expression of the transcription factor GRF9.
GROWTH-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia.
Age, Specimen part
View SamplesBoth cellular senescence and organismic aging are known to be dynamic processes that start early in life and progress constantly during the whole life of the individual. In this work, with the objective of identifying signatures of age-related progressive change at the transcriptomic level, we have performed a whole-genome gene expression analysis of peripheral blood leukocytes in a group of healthy individuals with ages ranging from 14 to 93 years. A set of genes with progressively changing gene expression (either increase or decrease with age) has been identified and contextualized in a coexpression network. A modularity analysis has been performed on this network and biological-term and pathway enrichment analyses have been used for biological interpretation of each module. In summary, the results of the present work reveal the existence of a transcriptomic component that shows progressive expression changes associated to age in peripheral blood leukocytes, highlighting both the dynamic nature of the process and the need to complement young vs. elder studies with longitudinal studies that includes middle aged individuals. From the transcriptional point of view, immunosenescence seems to be occurring from a relatively early age, at least from the late 20s/early 30s, and the 49 56 y/o age-range appears to be critical. In general, the genes that, according to our results, show progressive expression changes with aging are involved in pathogenic/cellular processes that have classically been linked to aging in humans: cancer, immune processes and cellular growth vs. maintenance.
Age gene expression and coexpression progressive signatures in peripheral blood leukocytes.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Performance comparison of two microarray platforms to assess differential gene expression in human monocyte and macrophage cells.
Sex, Age, Specimen part
View SamplesThe present study was conducted to compare the ability of Affymetrix and Illumina microarray technologies to characterize the differential gene expression profiles of human monocytes and monocyte-derived-macrophages.
Performance comparison of two microarray platforms to assess differential gene expression in human monocyte and macrophage cells.
Sex, Age, Specimen part
View SamplesBALB/c mice are susceptible to proteoglycan (PG) aggrecan-induced arthritis (PGIA), and the absence of TSG-6 further increases susceptibility and local inflammatory reactions, including neutrophil invasion into the joints. To gain insight into the mechanisms of TSG-6 action, synovial fibroblasts were isolated from wild-type and TSG-6-KO mice, cultured and exposed to various agents affecting either the TSG-6 expression and/or modify the intracellular function of TSG-6.
TSG-6 protein, a negative regulator of inflammatory arthritis, forms a ternary complex with murine mast cell tryptases and heparin.
Sex, Treatment
View SamplesWhole-genome expression of peripheral blood leukocytes was measured in 22 patients and 24 controls using the Human Gene 1.0 ST array by Affymetrix
Transcriptomic profile reveals gender-specific molecular mechanisms driving multiple sclerosis progression.
Sex, Age, Specimen part, Disease
View SamplesNeuronal migration disorders such as lissencephaly and subcortical band heterotopia (SBH) are associated with epilepsy and intellectual disability. Doublecortin (DCX), LIS1 and alpha1-tubulin (TUBA1A), are mutated in these disorders, however corresponding mouse mutants do not show heterotopic neurons in the neocortex. On the other hand, the spontaneously arisen HeCo mouse mutant displays this phenotype. The study of this model reveals novel mechanisms of heterotopia formation. While, HeCo neurons migrate at the same speed as WT, abnormally distributed dividing progenitors were found throughout the cortical wall from E13. Through genetic studies we identified Eml1 as the mutant gene in HeCo mice. No full length transcripts of Eml1 were identified due to a retrotransposon insertion in an intron. Re-expression of Eml1, coding for a microtubule-associated protein, rescues the HeCo progenitor phenotype. We further show that EML1 is mutated in giant ribbon-like heterotopia in human. Our data link abnormal spindle orientations, ectopic progenitors and severe heterotopia in mouse and human.
Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.
No sample metadata fields
View SamplesHow various ATP-dependent chromatin remodellers bind to nucleosomes to regulate transcription is not well defined in mammalian cells. Here, we present genome-wide remodeller-interacting nucleosome profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind to nucleosomes at specific positions, either at one or both nucleosomes that flank each side of nucleosome-free promoter regions (NFRs), at enhancer elements, or within gene bodies. At promoters, bidirectional transcription commonly initiates on either side of remodeller-bound nucleosomes. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. At active genes, certain remodellers are positive regulators of transcription, whereas others act as repressors. At bivalent genes, which are bound by repressive Polycomb complexes, the same remodellers act in the opposite way. Together, these findings reveal how remodellers integrate promoter nucleosomal architecture to regulate ES cell transcription programs.
Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.
No sample metadata fields
View Samples