Although much is known about focal adhesion signaling induced by cell adhesion, how adhesion directs changes in transcription to control cell behavior is far less understood. Here we describe a novel mechanism by which changes in adhesion switch the activities of the mitogen-activated protein kinases (MAPKs) c-Jun N-terminal kinase (JNK) and p38, resulting in the differential activation and promoter occupancy of the SRF cofactors, the ternary complex factors (TCFs) Sap-1 and Net. Adhesion-induced MAPK/TCF switching controls immediate early gene expression and proliferation. This mechanism is of physiological relevance, as proliferative regulation by the TCFs is conserved in an ex ovo model of angiogenesis. Furthermore, microarray analysis identified novel genes and adhesive functions regulated by Sap-1 and Net. Thus our data identify the TCFs as key regulators of adhesion-induced transcription and cell behavior.
Adhesion regulates MAP kinase/ternary complex factor exchange to control a proliferative transcriptional switch.
Cell line
View SamplesThe aim of the experiment was to identify genes rapidly responding at their expression level to enhanced expression of the transcription factor GRF9.
GROWTH-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia.
Age, Specimen part
View SamplesBoth cellular senescence and organismic aging are known to be dynamic processes that start early in life and progress constantly during the whole life of the individual. In this work, with the objective of identifying signatures of age-related progressive change at the transcriptomic level, we have performed a whole-genome gene expression analysis of peripheral blood leukocytes in a group of healthy individuals with ages ranging from 14 to 93 years. A set of genes with progressively changing gene expression (either increase or decrease with age) has been identified and contextualized in a coexpression network. A modularity analysis has been performed on this network and biological-term and pathway enrichment analyses have been used for biological interpretation of each module. In summary, the results of the present work reveal the existence of a transcriptomic component that shows progressive expression changes associated to age in peripheral blood leukocytes, highlighting both the dynamic nature of the process and the need to complement young vs. elder studies with longitudinal studies that includes middle aged individuals. From the transcriptional point of view, immunosenescence seems to be occurring from a relatively early age, at least from the late 20s/early 30s, and the 49 56 y/o age-range appears to be critical. In general, the genes that, according to our results, show progressive expression changes with aging are involved in pathogenic/cellular processes that have classically been linked to aging in humans: cancer, immune processes and cellular growth vs. maintenance.
Age gene expression and coexpression progressive signatures in peripheral blood leukocytes.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Performance comparison of two microarray platforms to assess differential gene expression in human monocyte and macrophage cells.
Sex, Age, Specimen part
View SamplesThe present study was conducted to compare the ability of Affymetrix and Illumina microarray technologies to characterize the differential gene expression profiles of human monocytes and monocyte-derived-macrophages.
Performance comparison of two microarray platforms to assess differential gene expression in human monocyte and macrophage cells.
Sex, Age, Specimen part
View SamplesBALB/c mice are susceptible to proteoglycan (PG) aggrecan-induced arthritis (PGIA), and the absence of TSG-6 further increases susceptibility and local inflammatory reactions, including neutrophil invasion into the joints. To gain insight into the mechanisms of TSG-6 action, synovial fibroblasts were isolated from wild-type and TSG-6-KO mice, cultured and exposed to various agents affecting either the TSG-6 expression and/or modify the intracellular function of TSG-6.
TSG-6 protein, a negative regulator of inflammatory arthritis, forms a ternary complex with murine mast cell tryptases and heparin.
Sex, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.
Specimen part, Treatment
View SamplesSUMMARY Despite numerous genome-wide association studies involving glioblastoma (GBM), few therapeutic targets have been identified for this disease. Using patient derived glioma sphere cultures (GSCs), we have found that a subset of the proneural (PN) GSCs undergo transition to a mesenchymal (MES) state in a TNFa/NFkB dependent manner with an associated enrichment of CD44 sub-populations and radio-resistant phenotypes. To the contrary, MES GSCs exhibit constitutive NFkB activation, CD44 enrichment and radio-resistance. Patients whose tumors exhibit a higher MES metagene, increased expression of CD44, or activated NFkB were associated with poor radiation response and shorter survival. Our results indicate that NFkB activation mediated MES differentiation and radiation resistance presents an attractive therapeutic target for GBM.
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.
Specimen part
View SamplesSUMMARY Despite numerous genome-wide association studies involving glioblastoma (GBM), few therapeutic targets have been identified for this disease. Using patient derived glioma sphere cultures (GSCs), we have found that a subset of the proneural (PN) GSCs undergo transition to a mesenchymal (MES) state in a TNFa/NFkB dependent manner with an associated enrichment of CD44 sub-populations and radio-resistant phenotypes. To the contrary, MES GSCs exhibit constitutive NFkB activation, CD44 enrichment and radio-resistance. Patients whose tumors exhibit a higher MES metagene, increased expression of CD44, or activated NFkB were associated with poor radiation response and shorter survival. Our results indicate that NFkB activation mediated MES differentiation and radiation resistance presents an attractive therapeutic target for GBM.
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.
Specimen part, Treatment
View SamplesWhole-genome expression of peripheral blood leukocytes was measured in 22 patients and 24 controls using the Human Gene 1.0 ST array by Affymetrix
Transcriptomic profile reveals gender-specific molecular mechanisms driving multiple sclerosis progression.
Sex, Age, Specimen part, Disease
View Samples