We identified a rare subset of autoreactive lymphocytes with a hybrid phenotype of T and B cells including coexpression of TCR and BCR and key lineage markers of both cell types (hereafter referred to as dual expressers or DEs). To investigate the dual phenotype of DEs at single cell resolution, we examined their transcriptomes using single cell RNA sequencing (scRNA-seq). We sorted individual DEs, Bcon and Tcon cells from PBMCs of one type I diabetes patient and analyzed the transcriptomes of 34 DEs, 20 Bcon , and 23 Tcon using the plate-based SMART-seq2 protocol (Tirosh and Suva, 2018; Tirosh et al., 2016). Our results show that DEs have uniquely expressed genes along with genes encoding lineage markers of T and B cells. Overall design: Examination of the transcriptomes of three cell types, Des (Dual Expressors), Bcon (Conventional B) and Tcon (Conventional T) cells from the PBMCs of one type I diabetes patient
A Public BCR Present in a Unique Dual-Receptor-Expressing Lymphocyte from Type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen.
Specimen part, Disease, Subject
View SamplesIn mammals body temperature fluctuates diurnally around a mean value of 36-37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, in, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of Cold- Inducible RNA-Binding Protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles Cirbp mRNA oscillates about 3-fold in abundance, as it does in mouse liver. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here, we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach-to-steady-kinetics”, this posttranscriptional mechanism is wide-spread in the temperature-dependent control of gene expression. Overall design: Cultured NIH3T3 cells seeded and kept at 37C degree for 4 hours before being switched to 33C and 38C. After 16 hours of incubation the temperature was shifted to 38C and 33C, respectively. Sample were then taken at 0, 1, 3, 6 and 9 hour after the temperature shift. Paired-end, strand-specific, total RNA-seq was performed over the samples at the respective time points using the Illumina HiSeq2500 platform.
Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp.
Specimen part, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells.
Specimen part
View SamplesThe aim of the experiment was to identify genes rapidly responding at their expression level to enhanced expression of the transcription factor GRF9.
GROWTH-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia.
Age, Specimen part
View SamplesThis experiment compares the transciptional changes in antigen specific murine CD8 T cells (P14 T cells) after exposure in vivo to dendritic cells (DC) pulsed with low dose cognate peptide (1uM KAVYNFATC), high dose cognate peptide (100uM KAVYNFATC) or no antigen. Splenic dendritic cells were freshly isolated, peptide pulsed, washed and then adoptively transferred s.c. to the right footpad of C57BL/6 hosts. After 18h, freshly isolated P14 CD8 T cells were labelled with CMFDA and adoptively transferred iv. Two hours after T cell transfer, anti-L selectin antibody was given iv. At 12 and 24 hours, recipients were sacrificed and The right popliteal LN was harvested at 12 or 24h post T cell transfer and a single cell suspension was created and stained with PE CD4, B220 and CD19 (dump channel). Cells were then sorted on a FacsARIA for being non-doublets, CMFDA positive and dump channel negative.
Antigen availability determines CD8⁺ T cell-dendritic cell interaction kinetics and memory fate decisions.
No sample metadata fields
View SamplesDifferentiation of naive CD4+ T cells into T-helper (Th) effector subsets is critical for protection against pathogens. Together, E-protein transcription factors and the inhibitor-of-DNA binding (Id) proteins are important arbiters of T cell development, but their role in the differentiation of Th1 and Tfh cells is not well understood. Th1 cells show robust Id2 expression compared to Tfh cells, and RNAi depletion of Id2 increased Tfh cell frequencies and germinal center responses, while impairing Th1 cell accumulation during viral infection. Further, Th1 cell differentiation was blocked by genetic ablation of Id2, leading to E-protein dependent accumulation of effector cells with 78% of Th1-associated genes showing diminished expression and a concurrent enrichment of the Tfh gene-expression program. The Tfh-defining transcriptional repressor Bcl6 bound to the Id2 locus inhibiting expression, providing a mechanism by which bimodal expression of Id2 in Tfh and Th1 cells can be established. Thus, Id2 is critical in enforcing the reciprocal development of Th1 and Tfh cell fates.
Id2 reinforces TH1 differentiation and inhibits E2A to repress TFH differentiation.
Age, Specimen part
View SamplesThis study is designed to compare and contrast the temporal and spatial changes in bone formation rates and transcriptional profiles in cortical and cancellous bone cell populations enriched by laser capture microdissection (LCM) in ovariectomized rats administered Scl-Ab by subcutaneous injection for up to 26 consecutive weeks, followed by a recovery period of up to 18 weeks.
Time-dependent cellular and transcriptional changes in the osteoblast lineage associated with sclerostin antibody treatment in ovariectomized rats.
Sex, Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Runx3 programs CD8<sup>+</sup> T cell residency in non-lymphoid tissues and tumours.
Specimen part, Time
View SamplesTissue-resident memory CD8+T cells (Trm) are positioned at common sites of pathogen exposure where they elicit rapid and robust protective immune responses1,2. However, the molecular signals controlling Trm differentiation and homeostasis are not fully understood. Here we show that mouse Trm precursor cells represent a unique CD8+T cell subset that is distinct from the precursors of circulating memory populations at the levels of gene expression and chromatin accessibility. Exploiting computational and functional RNAiin vivoscreens, we identified the transcription factor (TF) Runx3 as a key regulator of Trm differentiation and homeostasis. Runx3 was required to establish Trm populations in diverse tissue environments and supported expression of critical tissue-residency genes while suppressing genes associated with tissue egress and recirculation. Analysis of the accessibility of Runx3 target genes in Trm-precursor cells revealed a distinct regulatory role for Runx3 in controlling Trm differentiation despite relatively widespread and uniform expression among all CD8+T cell subsets.Further, we show that human and murine tumor-infiltrating lymphocytes (TIL) share a core tissue-residency gene-expression signature with Trm. In a mouse model of adoptive T cell therapy for melanoma, Runx3-deficient CD8+TIL failed to accumulate in tumors, resulting in greater rates of tumor growth and mortality. Conversely, overexpression of Runx3 enhanced TIL abundance, delayed tumor growth, and prolonged survival. In addition to establishing Runx3 as a central regulator of Trm differentiation, these results provide novel insight into the signals that promote T cell residency in tissues, which could be leveraged to enhance vaccine efficacy or adoptive cell therapy treatments that target cancer.
Runx3 programs CD8<sup>+</sup> T cell residency in non-lymphoid tissues and tumours.
Specimen part, Time
View SamplesTissue-resident memory CD8+ T cells (Trm) are positioned at common sites of pathogen exposure where they elicit rapid and robust protective immune responses1,2. However, the molecular signals controlling Trm differentiation and homeostasis are not fully understood. Here we show that mouse Trm precursor cells represent a unique CD8+ T cell subset that is distinct from the precursors of circulating memory populations at the levels of gene expression and chromatin accessibility. Exploiting computational and functional RNAi in vivo screens, we identified the transcription factor (TF) Runx3 as a key regulator of Trm differentiation and homeostasis. Runx3 was required to establish Trm populations in diverse tissue environments and supported expression of critical tissue-residency genes while suppressing genes associated with tissue egress and recirculation. Analysis of the accessibility of Runx3 target genes in Trm-precursor cells revealed a distinct regulatory role for Runx3 in controlling Trm differentiation despite relatively widespread and uniform expression among all CD8+ T cell subsets. Further, we show that human and murine tumor-infiltrating lymphocytes (TIL) share a core tissue-residency gene-expression signature with Trm. In a mouse model of adoptive T cell therapy for melanoma, Runx3-deficient CD8+ TIL failed to accumulate in tumors, resulting in greater rates of tumor growth and mortality. Conversely, overexpression of Runx3 enhanced TIL abundance, delayed tumor growth, and prolonged survival. In addition to establishing Runx3 as a central regulator of Trm differentiation, these results provide novel insight into the signals that promote T cell residency in tissues, which could be leveraged to enhance vaccine efficacy or adoptive cell therapy treatments that target cancer. Overall design: 8 samples, 2 replicates each, naïve P14 cells or Day 7 LCMV infection CD8+ T cell subsets
Runx3 programs CD8<sup>+</sup> T cell residency in non-lymphoid tissues and tumours.
Specimen part, Cell line, Subject
View Samples