refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 89 results
Sort by

Filters

Technology

Platform

accession-icon GSE3713
The AIN-centered DCN of delayed-type eyeblink conditioned mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Anterior interpositus nucleus (AIN) is a proposed site of memory formation of eyeblink conditioning. A large part of the underlying molecular events, however, remains unknown. To elucidate molecular mechanisms, we examined transcriptional changes in the AIN of mice trained with delayed-type eyeblink conditioning

Publication Title

Molecular evidence for two-stage learning and partial laterality in eyeblink conditioning of mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE3651
The AIN-centered DCN of delayed-type eyeblink conditioned mice: 3-d paired training and sham negative control groups
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Anterior interpositus nucleus (AIN) is a proposed site of memory formation of eyeblink conditioning. A large part of the underlying molecular events, however, remains unknown. To elucidate molecular mechanisms, we examined transcriptional changes in the AIN of mice trained with delayed-type eyeblink conditioning

Publication Title

Molecular evidence for two-stage learning and partial laterality in eyeblink conditioning of mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE3652
The AIN-centered DCN of delayed-type eyeblink conditioned mice: 7-d paired and 7-d unpaired training groups
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Anterior interpositus nucleus (AIN) is a proposed site of memory formation of eyeblink conditioning. A large part of the underlying molecular events, however, remains unknown. To elucidate molecular mechanisms, we examined transcriptional changes in the AIN of mice trained with delayed-type eyeblink conditioning

Publication Title

Molecular evidence for two-stage learning and partial laterality in eyeblink conditioning of mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE46970
Gene expression of 4, 5, and 6 days differentiated Flk1+ WT ES cells, and of 6 days differentiated Flk1+ Runx1-/- and Tal-1-/- ES cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In order to identify genes that are activated in differentiating WT ESCs, but are missing in Tal-1-/- and Runx1-/- ESCs, and which might be involved in the generation of definitive hematopoietic progenitors and their specification thereafter, we performed microarray analyses on purified Flk-1+ cells, differentiated from these ESCs for 4, 5, and 6 days in vitro.

Publication Title

Ectopic Runx1 expression rescues Tal-1-deficiency in the generation of primitive and definitive hematopoiesis.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE73825
Spatial interplay between Polycomb and Trithorax complexes controls transcriptional activity in T lymphocytes
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Spatial Interplay between Polycomb and Trithorax Complexes Controls Transcriptional Activity in T Lymphocytes.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE28292
Genome-wide analysis reveals unique regulation of transcription of Th2-specific genes by GATA3
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Differentiation of naive CD4 T cells into type 2 helper (Th2) cells is accompanied by chromatin remodeling and increased expression of a set of Th2-specific genes including those encoding Th2 cytokines. IL-4-mediated STAT6 activation induces high levels of transcription of GATA3, a master regulator of Th2 cell differentiation, and enforced expression of GATA3 induces Th2 cytokine expression. However, it remains unclear whether the expression of other Th2-specific genes is induced directly by GATA3. A genome-wide unbiased ChIP-seq analysis revealed that GATA3 bound to 1,279 genes selectively in Th2 cells, and 101 genes in both Th1 and Th2 cells. Simultaneously, we identified 26 highly Th2-specific STAT6-dependent inducible genes by a DNA microarray analysis-based three-step selection processes, and among them 17 genes showed GATA3 binding. We assessed dependency on GATA3 for the transcription of these 26 Th2-specific genes, and 10 genes showed increased transcription in a GATA3-dependent manner while 16 genes showed no significant responses. The transcription of the 16 GATA3-nonresponding genes was clearly increased by the introduction of an active form of STAT6, STAT6VT. Therefore, although GATA3 has been recognized as a master regulator of Th2 cell differentiation, many Th2-specific genes are not regulated by GATA3 itself but in collaboration with STAT6.

Publication Title

Genome-wide analysis reveals unique regulation of transcription of Th2-specific genes by GATA3.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP064560
Spatial interplay between Polycomb and Trithorax complexes controls transcriptional activity in T lymphocytes [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500, Illumina HiSeq 2500

Description

Trithorax group (TrxG) and Polycomb group (PcG) proteins are two mutually antagonistic chromatin modifying complexes, however, how they together mediate transcriptional counterregulation remains unknown. Genome-wide analysis revealed that binding of Ezh2 and Menin, central members of the PcG and TrxG complexes, respectively, were reciprocally correlated. Moreover, we identified a developmental change in the positioning of Ezh2 and Menin in differentiated T lymphocytes compared to embryonic stem cells. Ezh2-binding upstream and Menin-binding downstream of the transcription start site (TSS) was frequently found at genes with higher transcriptional levels, and Ezh2-binding downstream and Menin-binding upstream was found at genes with lower expression in T lymphocytes. Interestingly, of the Ezh2 and Menin co-occupied genes, those exhibiting occupancy at the same position displayed greatly enhanced sensitivity to loss of Ezh2. Finally, we also found that different combinations of Ezh2 and Menin occupancy were associated with expression of specific functional gene groups important for T cell development. Therefore, spatial cooperative gene regulation by the PcG and TrxG complexes may represent a novel mechanism regulating the transcriptional identity of differentiated cells. Overall design: Gene expression profiles of ES cells, B cells and T cells are assessed by RNA-seq.

Publication Title

Spatial Interplay between Polycomb and Trithorax Complexes Controls Transcriptional Activity in T Lymphocytes.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE72757
Spatial interplay between Polycomb and Trithorax complexes controls transcriptional activity in T lymphocytes [array]
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Trithorax group (TrxG) and Polycomb group (PcG) proteins are two mutually antagonistic chromatin modifying complexes, however, how they together mediate transcriptional counterregulation remains unknown. Genome-wide analysis revealed that binding of Ezh2 and Menin, central members of the PcG and TrxG complexes, respectively, were reciprocally correlated. Moreover, we identified a developmental change in the positioning of Ezh2 and Menin in differentiated T lymphocytes compared to embryonic stem cells. Ezh2-binding upstream and Menin-binding downstream of the transcription start site (TSS) was frequently found at genes with higher transcriptional levels, and Ezh2-binding downstream and Menin-binding upstream was found at genes with lower expression in T lymphocytes. Interestingly, of the Ezh2 and Menin co-occupied genes, those exhibiting occupancy at the same position displayed greatly enhanced sensitivity to loss of Ezh2. Finally, we also found that different combinations of Ezh2 and Menin occupancy were associated with expression of specific functional gene groups important for T cell development. Therefore, spatial cooperative gene regulation by the PcG and TrxG complexes may represent a novel mechanism regulating the transcriptional identity of differentiated cells.

Publication Title

Spatial Interplay between Polycomb and Trithorax Complexes Controls Transcriptional Activity in T Lymphocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP162113
Characterization of ST2+ and ST2- mTh cells in helminth infection
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

CD4+T cells are differentiated into Th1, Th2, Th17 and Treg cells after Antigen presentation by other cell types such as dendritic cells, macrophages and B cells in Lymph nodes. Those differentiated CD4+T cells are subdivided into cell subsets by their producing cytokines and surface markers. We recently identified that ST2 expressing Th2 cells highly produced IL-5 comparing to ST2- Th2 cells in helminth infection. In this study, we investigated the RNAseq analysis to characterize these Th2 cells. Overall design: Characterization of ST2+ and ST2- mTh cells are assessed by RNA-seq.

Publication Title

CXCR6<sup>+</sup>ST2<sup>+</sup> memory T helper 2 cells induced the expression of major basic protein in eosinophils to reduce the fecundity of helminth.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE46185
Genome-wide gene expression profiling revealed a critical role for GATA3 in the maintenance of the Th2 cell identity
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Functionally polarized CD4+ T helper (Th) cells such as Th1, Th2 and Th17 cells are central to the regulation of acquired immunity. However, the molecular mechanisms governing the maintenance of the polarized functions of Th cells remain unclear. GATA3, a master regulator of Th2 cell differentiation, initiates the expressions of Th2 cytokine genes and other Th2-specific genes. GATA3 also plays important roles in maintaining Th2 cell function and in continuous chromatin remodeling of Th2 cytokine gene loci. However, it is unclear whether continuous expression of GATA3 is required to maintain the expression of various other Th2-specific genes. In this report, genome-wide DNA gene expression profiling revealed that GATA3 expression is critical for the expression of a certain set of Th2-specific genes. We demonstrated that GATA3 dependency is reduced for some Th2-specific genes in fully developed Th2 cells compared to that observed in effector Th2 cells, whereas it is unchanged for other genes. Moreover, effects of a loss of GATA3 expression in Th2 cells on the expression of cytokine and cytokine receptor genes were examined in detail. A critical role of GATA3 in the regulation of Th2-specific gene expression is confirmed in in vivo generated antigen-specific memory Th2 cells. Therefore, GATA3 is required for the continuous expression of the majority of Th2-specific genes involved in maintaining the Th2 cell identity.

Publication Title

Genome-Wide Gene Expression Profiling Revealed a Critical Role for GATA3 in the Maintenance of the Th2 Cell Identity.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact