Analysis of a SigX knockout mutant of Pseudomonas aeruginosa H103 strain in minimal medium with glucose as carbon source (M9G).
The extra-cytoplasmic function sigma factor sigX modulates biofilm and virulence-related properties in Pseudomonas aeruginosa.
No sample metadata fields
View SamplesMalaria infection triggers vigorous host immune responses; however, the parasite ligands, host receptors and the signaling pathways responsible for these reactions remain unknown or controversial. Malaria parasites primarily reside within red blood cells (RBCs), thereby hiding themselves from direct contact and recognition by host immune cells. Host responses to malaria infection are very different from those elicited by bacterial and viral infections and the host receptors recognizing parasite ligands have been elusive. Here we investigated mouse genome-wide transcriptional responses to infections with two strains of Plasmodium yoelii (N67 and N67C) and discovered differences in innate response pathways corresponding to strain-specific disease phenotypes. Using in vitro RNAi gene knockdown and knockout mice, we demonstrated that a strong IFN-I response triggered by RNA Polymerase III and melanoma differentiation-associated protein 5 (MDA5), not Toll-like receptors (TLRs), binding of parasite DNA/RNA contributed to a decline of parasitemia in N67-infected mice. We showed that conventional dendritic cells were the major sources of early IFN-I, and that surface expression of phosphatidylserine (PS) on infected RBC (iRBC) might promote their phagocytic uptake, leading to the release of parasite ligands and the IFN-I response in N67 infection. In contrast, an elevated inflammatory response mediated by CD14/TLR and p38 signaling played a role in disease severity and early host death in N67C-infected mice. In addition to identifying cytosolic DNA/RNA sensors and signaling pathways previously unrecognized in malaria infection, our study demonstrates the importance of parasite genetic backgrounds in malaria pathology and provides important information for studying human malaria pathogenesis.
Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2.
Specimen part, Cell line
View SamplesThe Ikaros zink finger transcription factor is a critical regulator of the hematopietic system, and plays an important role in the regulation of the development and function of several blood cell lineages.
Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2.
Specimen part
View SamplesWe used microarrays to analyze gene expression changes in the Ikaros null ILC87 T cell tumor line after re-expression of Ikaros.
Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2.
Cell line
View SamplesSeven-day-old white-light-grown Arabidopsis seedlings were exposed for 15 minutes to polychromatic radiation with decreasing short-wave cut-off in the UV range, transferred back to the standard growth chamber and samples were taken 1 and 6 hours after the start of irradiation.
Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis.
Age, Time
View SamplesLamin A/C was ablated in pancreatic acinar cells using Elastase1 driven, Cre-ErT mediated, LoxP recombination, causing excision of exons 10 and 11 of the Lmna gene
Lamin A/C Maintains Exocrine Pancreas Homeostasis by Regulating Stability of RB and Activity of E2F.
Sex
View SamplesSeven-day-old white-light-grown wild-type, cop1-4 or hy5-1 mutant Arabidopsis seedlings were exposed for fifteen minutes to polychromatic radiation with decreasing short-wave cut-off in the UV range (WG305 = +UV-B, WG327 = -UV-B) and samples were taken 1 h after the onset of irradiation.
CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis.
Age, Time
View SamplesacLDL loading of mouse peritoneal macrophage is an in vitro foam cell model.
Cholesterol accumulation regulates expression of macrophage proteins implicated in proteolysis and complement activation.
No sample metadata fields
View SamplesHistological resolution of the murine pancreas occurs within one week after injury. Whether histological resolution constitutes pancreatic recovery at a molecular level is not known. We performed RNA-sequencing on the recovering pancreas to determine the transcriptomic profile within the histologically recovered pancreas. We show that although there is histological resolution one week after injury in mice, compared to baseline (non-injured pancreas), there are still numerous differentially expressed genes (DEGs) at one and even two weeks after injury. Overall, the findings suggest the actual recovery takes longer than initially thought given the differential transcriptomic profile in the pancreas two weeks after injury compared to the baseline pancreas. There is also the possibility of a novel emerging pancreatic transcriptome upon recovery. Overall design: Acute pancreatitis was induced by caerulein hyperstimulation in both male and female C57BL/6 mice. Total RNA was extracted from the head of the murine pancreas in mice at baseline (non-injured; n=8), day 7 (post-injury; n=8), and day 14 (post-injury; n=7). Total stranded RNA libraries (ribo-depleted) were generated and sequenced on the Illumina NextSeq 500 NGS platform. RNA-seq data was analyzed for differentially expressed genes between baseline and day 7 and between baseline and day 14.
Pancreatic gene expression during recovery after pancreatitis reveals unique transcriptome profiles.
Sex, Specimen part, Cell line, Subject
View Samples