refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 29 results
Sort by

Filters

Technology

Platform

accession-icon GSE31452
Cereblon expression is required for the anti-myeloma activity of lenalidomide and pomalidomide
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE31421
Cereblon expression is required for the anti-myeloma activity of lenalidomide and pomalidomide [expression profiling]
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The precise molecular mechanism of action and targets through which thalidomide and related immunomodulatory drugs (IMiDs) exert their anti-tumor effects remains unclear. We investigated the role of cereblon (CRBN), a primary teratogenic target of thalidomide, in the anti-myeloma activity of IMiDs. CRBN depletion is initially cytotoxic to human myeloma cells but surviving cells with stable CRBN depletion become highly resistant to both lenalidomide and pomalidomide, but not to the unrelated drugs bortezomib, dexamethasone and melphalan. Acquired deletion of CRBN was found to be the primary genetic event differentiating isogenic MM1.S cell lines cultured to be sensitive or resistant to lenalidomide and pomalidomide. Gene expression changes induced by lenalidomide were dramatically suppressed in the presence of CRBN depletion further demonstrating that CRBN is required for lenalidomide activity. Downstream targets of CRBN include interferon regulatory factor 4 (IRF4) previously reported to also be a target of lenalidomide. Patients exposed to and putatively resistant to lenalidomide had lower CRBN levels in paired samples before and after therapy. In summary, CRBN is an essential requirement for IMiD activity, and a possible biomarker for the clinical assessment of anti-myeloma efficacy.

Publication Title

Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE39754
Gene Expression profiling of Multiple Myeloma
  • organism-icon Homo sapiens
  • sample-icon 175 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Gene Expression profiling of 170 newly diagnosed Multiple Myeloma patients

Publication Title

A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE68091
Effects of ONC201 on mantle cell lymphoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The small molecule ONC201 is toxic in vitro to multiple cell lines and primary tumor samples of mantle cell lymphoma (MCL) and acute myeloid leukemia, even ones with unfavorable genetic features (notably including TP53 inactivation) or acquired resistance to other agents. Because the mechanism of action in these malignant hematologic cells appeared to differ from that in solid tumors, we performed gene expression profiling (GEP) studies on MCL lines treated with ONC201 and other agents with known mechanisms of action. Treatment of JeKo-1 cells with 5 uM ONC201 showed consistent and progressive increases or decreases over time in two sets of genes: upregulated genes, which implicated an ER stress response and mTOR pathway inhibition, and downregulated genes, which implicated reduced proliferation. These implicated effects of ONC201 were validated by confirmatory experiments. Similar GEP changes were observed in ONC201-naive Z138 cells after 24 hr of ONC201 treatment, but were not seen in Z138 cells made ONC201-resistant by chronic exposure. Finally, the GEP effects of ONC201 in JeKo-1 cells were mimicked by the ER stress inducer tunicamycin, but not by the direct MTOR inhibition rapamycin, further confirming an ER stress response and suggesting that inhibition of the mTOR pathway was by an indirect mechanism.

Publication Title

ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE40413
IL-17 and TNF synergistically induce growth-associated cytokines in melanocytes while suppressing melanogenesis
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study, we sought to determine how IL-17 and TNF influence normal human melanocytes, either alone, or with both cytokines together. We reveal a dichotomous effect of IL-17 and TNF, which not only elicit essential mitogenic cytokines but also suppress melanogenesis by down-regulating genes of melanogenesis pathway

Publication Title

IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: potential relevance to psoriasis.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE4737
HCaRG vs NEO
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Summary:

Publication Title

HCaRG increases renal cell migration by a TGF-alpha autocrine loop mechanism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2555
HCaRG-9 vs NEO-1
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Genome U133A Array (hgu133a)

Description

HEK293 cells were transfected with control plasmid (pcDNAI/Neo;Invitrogen) or with the plasmid encoding HCaRG. Stable transfectants were synchronized and grown in the presence of 10% FBS for 48 h. Total RNAs were purified with the mini RNeasy kit (Qiagen).

Publication Title

HCaRG increases renal cell migration by a TGF-alpha autocrine loop mechanism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45748
Addiction of t(8;21) and inv(16) AML to native RUNX1
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE45743
Addiction of t(8;21) and inv(16) AML to native RUNX1 [Gene Expression data]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Cancer cells maintain a sensitive balance between growth-promoting oncogenes and apoptosis inhibitors. We show that WT RUNX1 is required for survival of t(8;21)-Kasumi-1 and inv(16)-ME-1 AML cell lines. The malignant AML phenotype is sustained by a delicate AML1-ETO/RUNX1 balance that involves competition for common DNA binding sites regulating a subset of AML1-ETO/RUNX1 targets.

Publication Title

Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE17439
Global gene-expression analyses of the Eset knock-down ES cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Mouse Ref-6 V1

Description

The histone H3 lysine 9 (H3K9) methyltransferase Eset is an epigenetic regulator critical for the development of the inner cell mass (ICM). Although ICM-derived embryonic stem (ES) cells are normally unable to contribute to the trophectoderm (TE) in blastocysts, we find that depletion of Eset by shRNAs leads to differentiation with the formation of trophoblast-like cells and induction of trophoblast-associated gene expression. Using ChIP-seq analyses, we identified Eset target genes with Eset-dependent H3K9 trimethylation. We confirmed that genes that are preferentially expressed in the TE (Tcfap2a and Cdx2) are bound and repressed by Eset. Single cell PCR analysis shows that the expression of Cdx2 and Tcfap2a is also induced in Eset-depleted morula cells. Importantly, Eset-depleted cells can incorporate into the TE of a blastocyst and subsequently placental tissues. Co-immunoprecipitation and ChIP assays further demonstrates that Eset interacts with Oct4, which in turn recruits Eset to silence these trophoblast-associated genes. Our result suggests that Eset restricts the extraembryonic trophoblast lineage potential of pluripotent cells and links an epigenetic regulator to key cell fate decision through a pluripotency factor.

Publication Title

Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact