refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 11 results
Sort by

Filters

Technology

Platform

accession-icon GSE33874
Identification of a Potential Ovarian Cancer Stem Cell Gene Expression Profile from Advanced Stage Papillary Serous Ovarian Cancer
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To identify the potential ovarian cancer stem cell gene expression profile from isolated side population of fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma

Publication Title

Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26712
A Gene Signature Predicting for Survival in Suboptimally Debulked Patients with Ovarian Cancer
  • organism-icon Homo sapiens
  • sample-icon 195 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To identify a prognostic gene signature accounting for the distinct clinical outcomes in ovarian cancer patients

Publication Title

A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15796
Spatiotemporal Analysis of Transcriptome in the paraxial mesoderm of zebrafish embryos
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Differentially expressed genes along the paraxial mesoderm of 12 somite stage zebrafish embryos are identified

Publication Title

Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP075406
Epigenetic siRNA and chemical screens identify SETD8 inhibition as a new therapeutic strategy of p53 reactivation in high-risk Neuroblastoma.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: The intergration of genetic and chemical screens identified SETD8 as a new druggable target in neuroblastoma tumor. The goal of this study is to evaluate the transcriptome profiling (RNA-seq) of Neuroblastoma cell lines after genetic and pharmacological inhibition of SETD8. Methods: mRNA profiles of NB cells after genetic and pharmacological inhibition of SETD8 were generated by deep sequencing in duplicate with Ilumina HiSeq2500 using Illumina TruSeq V4. The sequence reads were analyzed with software Trimmomatic, STAR and edgeR to determine the differetially expressed genes. qRT–PCR validation was performed using SYBR Green assays. Results: About 60 million sequence reads per sample were mapped to the human genome (hg19). Approximately 10% of the transcripts showed differential expression between the control and the treated samples, with a fold change =1.5 and p value <0.05. Altered expression of 12 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to SETD8 function. Conclusions: Our study identifies SETD8 as a new therapeutic target in Neuroblastoma tumor. RNA-seq transcriptome analyses and functional studies revealed that SETD8 ablation rescued the proapoptotic and cell-cycle arrest functions of p53 through reactivation of the p53 canonical pathway by decreasing p53k382me1. Overall design: mRNA profiles of Neuroblastoma cells after genetic and pharmacological inhibition of SETD8 were generated by deep sequencing in duplicate with Ilumina HiSeq2500 using Illumina TruSeq V4.

Publication Title

Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE18521
A gene signature predictive for outcome in advanced ovarian cancer identifies a novel survival factor: MAGP2
  • organism-icon Homo sapiens
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2.

Sample Metadata Fields

Specimen part, Disease stage, Cell line, Treatment

View Samples
accession-icon GSE18520
Whole-genome oligonucleotide expression analysis of papillary serous ovarian adenocarcinomas
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To demonstrate the use of a whole-genome oligonucleotide array to perform expression profiling on a series of microdissected late-stage, high-grade papillary serous ovarian adenocarcinomas to establish a prognostic gene signature correlating with survival and to identify novel survival factors in ovarian cancer.

Publication Title

A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE29450
Identification of Novel Therapeutic Targets in Microdissected Clear Cell Ovarian Cancers
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To identify the gene signature accounting for the distinct clinical outcomes in ovarian clear cell cancer patients

Publication Title

Identification of novel therapeutic targets in microdissected clear cell ovarian cancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18373
Expression data of HUVEC and OVCA429 with recombinant MAGP2
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of signaling events contributing to the effect of recombinant MAGP2 on HUVECs and OVCA429. We used microarrays to identify the signaling events and up-regulated genes associated with MAGP2.

Publication Title

A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE54976
Gene expression in thymi of Tcf1 -/-, Tcf +/- or Tcf1 -/- mice with tumor.
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The HMG-box factor Tcf1 is required during T-cell development in the thymus and mediates the nuclear response to Wnt signals. Tcf1/ mice have previously been characterized and show developmental blocks at the CD4CD8 double negative (DN) to CD4+CD8+ double positive transition. Due to the blocks in T-cell development, Tcf1/ mice normally have a very small thymus. Unexpectedly, a large proportion of Tcf1/ mice spontaneously develop thymic lymphomas with 50% of mice developing a thymic lymphoma/leukemia at the age of 16 wk. These lymphomas are clonal, highly metastatic, and paradoxically show high Wnt signaling when crossed with Wnt reporter mice and have high expression of Wnt target genes Lef1 and Axin2. In wild-type thymocytes, Tcf1 is higher expressed than Lef1, with a predominance of Wnt inhibitory isoforms. Loss of Tcf1 as repressor of Lef1 leads to high Wnt activity and is the initiating event in lymphoma development, which is exacerbated by activating Notch1 mutations. Thus, Notch1 and loss of Tcf1 functionally act as collaborating oncogenic events. Tcf1 deficiency predisposes to the development of thymic lymphomas by ectopic up-regulation of Lef1 due to lack of Tcf1 repressive isoforms and frequently by cooperating activating mutations in Notch1. Tcf1 therefore functions as a T-cellspecific tumor suppressor gene, besides its established role as a Wnt responsive transcription factor. Thus, Tcf1 acts as a molecular switch between proliferative and repressive signals during T-lymphocyte development in the thymus.

Publication Title

The nuclear effector of Wnt-signaling, Tcf1, functions as a T-cell-specific tumor suppressor for development of lymphomas.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46170
Whole Genome Expression Array in Human T-cell Acute Lymphoblastic Leukemia
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Childhood T-ALL samples were compared with thymocyte subsets

Publication Title

Deregulated WNT signaling in childhood T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact