refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE23547
Comparison of tenascin-C proficient versus tenascin-C deficient Mouse Embryonic Fibroblasts (MEFs)
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In order to investigate what signalling pathways are turned on by tenascin-C, we generated Mouse Embryonic Fibroblasts (MEFs) deficient for tenascin-C and compared their gene expression profile to MEFs proficient for tenascin-C.

Publication Title

Tenascin-C triggers fibrin accumulation by downregulation of tissue plasminogen activator.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE75325
Expression data transgenic mouse mammary tumors
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Immunosurveillance constitutes the first step of cancer immunoediting in which developing malignant lesions are eliminated by anti-tumorigenic immune cells. However, the mechanisms by which neoplastic cells induce an immunosuppressive state to evade the immune response are still unclear. The transcription factor Stat3 has been implicated in breast carcinogenesis and tumor immunosuppression in advanced disease, but its involvement in early disease development has not been established. Here, we genetically ablated Stat3 in the tumor epithelia of the inducible PyVmT mammary tumor model and found that Stat3-deficient mice recapitulated the three phases of immunoediting: elimination, equilibrium, and escape. Pathological analyses revealed that Stat3-deficient mice initially formed hyperplastic and early adenoma-like lesions that later completely regressed, thereby preventing the emergence of mammary tumors in the majority of animals. Furthermore, tumor regression was correlated with massive immune infiltration into the Stat3-deficient lesions, leading to their elimination. In a minority of animals, focal, non-metastatic Stat3-deficient mammary tumors escaped immunosurveillance after a long latency or equilibrium period. Taken together, our findings suggest that tumor epithelial expression of Stat3 plays a critical role in promoting an immunosuppressive tumor microenvironment during breast tumor initiation and progression, and prompt further investigation of Stat3 inhibitory strategies that may reactivate the immunosurveillance program.

Publication Title

STAT3 Establishes an Immunosuppressive Microenvironment during the Early Stages of Breast Carcinogenesis to Promote Tumor Growth and Metastasis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE84154
Celastrol treatment on mouse embryonic fibroblasts (MEFs)
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Celastrol has been shown to sensitize leptin receptor signaling and reduce ER stress. Current microarray data provide the gene expression profile in mouse embryonic fibroblasts (MEFs) after Celastrol treatment compared with control.

Publication Title

Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact