refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 107 results
Sort by

Filters

Technology

Platform

accession-icon SRP081074
CD133+ vs. CD133- cells in GBML8, a primary glioblastoma tumorsphere culture
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

CD133+ and CD133- cells were FACS islated from GBML8 cells to find gene signatures upregulated in cancer stem cells Overall design: After surface immuno staining, CD133+ and CD133- cells were FACS isolated and subjected to RNA isolation. Experiment represent averaged data of 2 independent FACS isolations.

Publication Title

GPR133 (ADGRD1), an adhesion G-protein-coupled receptor, is necessary for glioblastoma growth.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE85029
Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85006
Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells (Affy)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. Embryonic stem cells (ESC) strongly express Dido3, whose C-terminal truncation impedes ESC differentiation while retaining self-renewal. We show that Dido3 binds to its gene locus via H3K4me3 and RNA pol II and, at differentiation onset, induces expression of its splice variant Dido1, which then leads to Dido3 degradation and downregulation of stemness genes. We propose that Dido isoforms act as a switchboard to regulate genetic programs for ESC transition from pluripotency maintenance to promotion of differentiation.

Publication Title

DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP073382
Transcriptome profiling of the human dorsal striatum in bipolar disorder
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Bipolar disorder (BD) is a highly heritable and heterogeneous mental illness whose manifestations often include impulsive and risk-taking behavior. This particular phenotype suggests that abnormal striatal function could be involved in BD etiology, yet most transcriptomic studies of this disorder have concentrated on cortical brain regions. We report the first transcriptome profiling by RNA-Seq of the human dorsal striatum comparing bipolar and control subjects. Differential expression analysis and functional pathway enrichment analysis were performed to identify changes in gene expression that correlate with BD status. Further co-expression and enrichment analyses were performed to identify sets of correlated genes that show association to BD. Overall design: Total RNA samples were isolated from 36 postmortem dorsal striatum subjects (18 bipolar and 18 control) and sequenced. One outlier sample was removed and 35 samples (18 bipolar and 17 control) were analyzed.

Publication Title

Transcriptome sequencing implicates dorsal striatum-specific gene network, immune response and energy metabolism pathways in bipolar disorder.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE8252
Acute Gene Induction by Tienilic Acid in the Male Sprague Dawley Rat: Possible Role for Danger
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Tienilic acid (TA) was withdrawn from the US market due to numerous cases of liver necrosis. Two major hypotheses currently used to understand the mechanisms of idiosyncratic reactions such as TA-induced hepatotoxicity are the hapten and danger hypotheses. Both human cytochrome (CYP) P450 2C9 and the rat ortholog CYP 2C11 metabolize TA, and it was reported that a reactive metabolite of TA binds almost exclusively to these enzymes, thus acting as a mechanism-based inhibitor. TA-induced liver toxicity is associated with antibodies against CYP 2C9, thus TA appears to act as a hapten. However, if the binding were limited to CYP 2C, it is unlikely that this would lead to significant cell stress. Thus, if TA does not cause cell stress it would suggest that a drug does not have to generate a danger signal in order to cause an idiosyncratic drug reaction and acting as a hapten is sufficient. In order to test whether TA can cause cell stress, male Sprague Dawley rats were orally dosed with TA, and hepatic gene expression was profiled at 6 and 24 h after drug administration.

Publication Title

Changes in gene expression induced by tienilic Acid and sulfamethoxazole: testing the danger hypothesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP125213
Transcriptome profiling of the aging fly brain
  • organism-icon Drosophila melanogaster
  • sample-icon 89 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Cognitive decline is a common occurrence of the natural aging process in animals, and studying age-related changes in gene expression in the brain might shed light on disrupted molecular pathways that play a role in this decline. The fruit fly is a useful neurobiological model for studying aging due to its short generational time and relatively small brain size. We investigated age-dependent changes in the Drosophila melanogaster whole-brain transcriptome by comparing 5-, 20-, 30- and 40-day-old flies of both sexes. We used RNA-Sequencing of dissected brain samples followed by differential expression, temporal clustering, co-expression network and gene ontology enrichment analyses. Our study provides the first transcriptome profile of aging brains from fruit flies of both sexes, and it will serve as an important resource for those who study aging and cognitive decline in this model. Overall design: 24 biological sample replicates (3 per age per sex), each consisting of pooled dissected whole-brains from 18 flies, were processed for total RNA extraction and sequencing. Age groups were 5, 20, 30 and 40 days old. One sample from the 30-day-old male group had to be removed from analysis due to sample contamination.

Publication Title

Brain transcriptome changes in the aging Drosophila melanogaster accompany olfactory memory performance deficits.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP132414
Molecular Signature of CAID Syndrome: Noncanonical Roles of SGO1 in Regulation of TGF-ß Signaling and Epigenomics. [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

RNA sequencing of human dermal fibroblasts from CAID patients passage 8 and passage 14 Overall design: RNA sequencing was perfomed on 3 wild type controls and 3 CAID patients fibroblast cell lines at cell passages 8 and 14. Sequencing was performed on Illumina Hiseq4000, 8 samples/lanes, paired-end.

Publication Title

Molecular Signature of CAID Syndrome: Noncanonical Roles of SGO1 in Regulation of TGF-β Signaling and Epigenomics.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE21893
Expression data from an Avian pathogenic Escherichia coli strain
  • organism-icon Escherichia coli
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Avian pathogenic Escherichia coli strains frequently cause extra-intestinal infections and are responsible for significant economic losses in the poultry industry worldwide. APEC isolates are closely related to human extraintestinal pathogenic E.coli strains and may also act as pathogens for humans. In this work, three type VI secretion systems were deleted to analyze which pathogenicity characteristics would change in the mutants, compared to wild type strain (SEPT 362).

Publication Title

The type VI secretion system plays a role in type 1 fimbria expression and pathogenesis of an avian pathogenic Escherichia coli strain.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP051368
Bacterial Infection Remodels the DNA Methylation Landscape of Human Dendritic Cells (mRNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

DNA methylation is an epigenetic mark thought to be robust to environmental perturbations on a short time scale. Here, we challenge that view by demonstrating that the infection of human dendritic cells with a live pathogenic bacteria is associated with rapid changes in methylation levels at thousands of loci. We performed an integrated analysis of data on genome-wide DNA methylation, histone mark patterns, chromatin accessibility, and gene expression, before and after infection. We found that infection-induced changes in methylation rarely occur at promoter regions and instead localize to distal enhancer elements. Active demethylation is associated with extensive epigenetic remodeling, including the gain of histone activation marks and the induction of enhancer RNAs, and is strongly predictive of changes in the expression levels of nearby genes. Collectively, our observations show that active, rapid changes in DNA methylation in enhancers play a previously unappreciated role in regulating the transcriptional response of immune cells to infection. Overall design: Transcriptional profiles (polyA+) of 6 non-infected and 6 MTB-infected dendritic cell samples.

Publication Title

Bacterial infection remodels the DNA methylation landscape of human dendritic cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE107591
The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD complex
  • organism-icon Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Background: circular RNAs are a class of endogenous RNAs with various functions in eukaryotic cells. Worthy of note, circular RNAs play a critical role in cancer. Currently, nothing is known about the role of circular RNAs in head and neck squamous cell carcinoma (HNSCC). The identification of circular RNAs in HNSCC might become useful for diagnostic and therapeutic strategies in HNSCC.

Publication Title

The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact