Mitochondria are centers of metabolism and signaling whose content and function must adapt to changing cellular environments. The biological signals that initiate mitochondrial restructuring and the cellular processes that drive this adaptive response are largely obscure. To better define these systems, we performed matched quantitative genomic and proteomic analyses of mouse muscle cells as they performed mitochondrial biogenesis. We find that proteins involved in cellular iron homeostasis are highly coordinated with this process, and that depletion of cellular iron results in a rapid, dose-dependent decrease of select mitochondrial protein levels and oxidative capacity. We further show that this process is universal across a broad range of cell types and fully reversed when iron is reintroduced. Collectively, our work reveals that cellular iron is a key regulator of mitochondrial biogenesis, and provides quantitative datasets that can be leveraged to explore post-transcriptional and post-translational processes that are essential for mitochondrial adaptation.
Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis.
Cell line, Treatment
View SamplesMLL1 WT or KO MEF with and without HSP90 inhibitor treatment
Identification of mixed lineage leukemia 1(MLL1) protein as a coactivator of heat shock factor 1(HSF1) protein in response to heat shock protein 90 (HSP90) inhibition.
Treatment
View SamplesMutations in the genes encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a variety of tumor types, resulting in production of the proposed oncometabolite, 2-hydroxyglutarate (2-HG). How mutant IDH and 2-HG alter signaling pathways to promote cancer, though, remains unclear. Additionally, there exist relatively few cell lines with IDH mutations. To examine the effect of endogenous IDH mutations and 2-HG, we created a panel of isogenic epithelial cell lines with either wild-type IDH1/2 or clinically relevant IDH1/2 mutations. Differences were noted in the ability of IDH mutations to cause robust 2-HG accumulation. IDH1/2 mutants that produce high levels of 2-HG cause an epithelial-mesenchymal transition (EMT)-like phenotype, characterized by changes in EMT-related gene expression and cellular morphology. 2-HG is sufficient to recapitulate aspects of this phenotype in the absence of an IDH mutation. In the cells types examined, mutant IDH-induced EMT is dependent on upregulation of the transcription factor ZEB1 and downregulation of the mir-200 family of microRNAs. Furthermore, sustained knockdown of IDH1 in IDH1 R132H mutant cells is sufficient to reverse many characteristics of EMT, demonstrating that continued expression of mutant IDH is required to maintain this phenotype. These results suggest mutant IDH proteins can reversibly deregulate discrete signaling pathways that contribute to tumorigenesis
Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT).
Cell line
View SamplesVCaP cells expressing inducible shRNAs for either ERG or a non-targeting control were treated with Doxycycline for 1, 3, 7 and 10 days prior to collection
TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation.
No sample metadata fields
View SamplesA transgenic TMPRSS2:ERG mouse model was engineered in FVB background and compared to its wildtype counterpart in the absence of any treatment This experiment is designed to look at ERG-dependent changes in phenotype and gene expression Overall design: A loxP-GFP-loxP-hERG exon 4-11 cassette was inserted into a BAC clone containing the TMPRSS2 locus using a recombineering kit. This modified BAC was used for pronuclear injection and generation of germline-transmitting mice. One line expressing high GFP was used for pronuclear injection of Cre protein and one sub-line that transmitted the TMPRSS2:ERG transgene into the germline was subsequently bred to homozygosity.
TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation.
No sample metadata fields
View SamplesA375 cells with inducible knockdown HSF1 with and without HSP90 inhibitor treatment
Targeting HSF1 sensitizes cancer cells to HSP90 inhibition.
Cell line, Treatment
View SamplesPcyt2 defient mice has metabolic syndrome and insulin resistance. We used microarray to study the gene expression of these mice to
Male-Specific Cardiac Dysfunction in CTP:Phosphoethanolamine Cytidylyltransferase (Pcyt2)-Deficient Mice.
Specimen part
View SamplesTwo human acute lymphoblastic leukemia cell lines (Molt-4 and CCRF-CEM) were treated with direct (A-769662) and indirect (AICAR) AMPK activators. Molt-4 and CCRF-CEM cells were obtained from ATCC (CRL-1582 and CCL-119). Control samples were used for the analysis of metabolic differences between cell lines. Therefore the data was analyzed in combination with, metabolomic data, and the genome-scale reconstruction of human metabolism. For experiments cells were grown in serum-free medium containing DMSO (0.67%) at a cell concentration of 5 x 105 cells/mL.
Prediction of intracellular metabolic states from extracellular metabolomic data.
Cell line, Treatment
View SamplesWe recently reported the scalable in vitro production of functional stem cell-derived cells. Here we extend this approach to generate SC- cells from Type 1 diabetic patients (T1D), a cell type that is destroyed during disease progression and has not been possible to extensively study. These cells express cell markers, respond to glucose both in vitro and in vivo, prevent alloxan-induced diabetes in mice, and respond to anti-diabetic drugs. Furthermore, we use an in vitro disease model to demonstrate the cells respond to different forms of cell stress. Using these assays, we find no major differences in T1D SC- cells compared to SC- cells derived from non-diabetic patients (ND). These results show that T1D SC- cells can be used for the treatment of diabetes, drug screening, and the study of cell biology.
Generation of stem cell-derived β-cells from patients with type 1 diabetes.
Specimen part
View SamplesMYC is a pleiotropic transcription factor that regulates numerous pathways and whose deregulation promotes cancer. Myc+/- mice have extended lifespan relative to their wild type littermates. To better understand the effects of the Myc+/- genotype on cellular processes, microarrays were performed on young (5 month) and old (24 month) Myc+/- and WT males in liver, skeletal muscle, and adipose tissues.
Reduced expression of MYC increases longevity and enhances healthspan.
Sex, Age, Specimen part
View Samples