refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 458 results
Sort by

Filters

Technology

Platform

accession-icon GSE78227
The maleless gene mitigates global aneuploid effect and evolutionary shift from X to autosomes
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

During sexual dimorphism, the loss of one entire X chromosome in Drosophila males is achieved largely via a broad genome-wide aneuploid effect. Exploring how MSL proteins and two large non coding RNAs (roX1 and roX2) modulate trans-acting aneuploid effect for equality to females, we employ a system biology approach (microarray) to investigate the global aneuploid effect of maleless(mle) mutation by disrupting MSL binding. A large number of the genes (144) that encode a broad spectrum of cellular transport proteins and transcription factors are located in the autosomes of Drosophila melanogaster.

Publication Title

Drosophila maleless gene counteracts X global aneuploid effects in males.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36935
Role of IGFBP-3 in the Regulation of -Cell Mass during Obesity: Adipose Tissue/ -Cell Cross Talk
  • organism-icon Rattus norvegicus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

In obesity an increase in -cell mass occurs to cope with the rise in insulin demand. This -cell plasticity is essential to avoid the onset of hyperglycemia, although the molecular mechanisms that regulate this process remain unclear. This study analyzed the role of adipose tissue in the control of -cell replication. Using a diet-induced model of obesity, we obtained conditioned media from three different white adipose tissue depots. Only in the adipose tissue depot surrounding the pancreas did the diet induce changes that led to an increase in INS1E cells and the islet replication rate. To identify the factors responsible for this proliferative effect, adipose tissue gene expression analysis was conducted by microarrays and quantitative RT-PCR. Of all the differentially expressed proteins, only the secreted ones were studied. IGF binding protein 3 (Igfbp3) was identified as the candidate for this effect. Furthermore, in the conditioned media, although the blockage of IGFBP3 led to an increase in the proliferation rate, the blockage of IGF-I receptor decreased it. Taken together, these data show that obesity induces specific changes in the expression profile of the adipose tissue depot surrounding the pancreas, leading to a decrease in IGFBP3 secretion. This decrease acts in a paracrine manner, stimulating the -cell proliferation rate, probably through an IGF-I-dependent mechanism. This cross talk between the visceral-pancreatic adipose tissue and -cells is a novel mechanism that participates in the control of -cell plasticity. (Endocrinology 153: 177187, 2012)

Publication Title

Role of IGFBP-3 in the regulation of β-cell mass during obesity: adipose tissue/β-cell cross talk.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44047
Secreted Frizzled-Related Protein 5 is Downregulated in Obesity and Promotes -Cell Proliferation
  • organism-icon Rattus norvegicus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Downregulation of Sfrp5 promotes beta cell proliferation during obesity in the rat.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44045
Secreted Frizzled-Related Protein 5 is Downregulated in Obesity and Promotes -Cell Proliferation [10 days]
  • organism-icon Rattus norvegicus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Obesity is associated with an increase in -cell mass in response tothe rising demand for insulin. -cell plasticity is essential to maintaining glucose homeostasis, however,the cellular and molecular mechanisms by which -cell mass is regulated remain poorly understood.Recently, we described the existence of a crosstalk between the peripancreatic adipose tissue and -cells as a novel mechanism that participates in the regulation of -cell plasticity. Here, we identify the secreted frizzled-related protein (Sfrp) 5 as down-regulated in the pancreatic islets of obese rats as well as in the pancreatic islets of human obese patients. Our results demonstrate that the silencing of Sfrp5 induces an increase in -cell proliferation, which we correlate with the activation of Wnt signaling and of the MAPK and PI3 kinase pathways. Together, these findings expand our understanding of the mechanisms underlying -cell proliferation under conditions of obesity. Furthermore, this study opens new insights into the specific targeting of Sfrp5 as a novel therapeutic strategy for balancing -cell mass.

Publication Title

Downregulation of Sfrp5 promotes beta cell proliferation during obesity in the rat.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44046
Secreted Frizzled-Related Protein 5 is Downregulated in Obesity and Promotes -Cell Proliferation [30 days]
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Obesity is associated with an increase in -cell mass in response tothe rising demand for insulin. -cell plasticity is essential to maintaining glucose homeostasis, however,the cellular and molecular mechanisms by which -cell mass is regulated remain poorly understood.Recently, we described the existence of a crosstalk between the peripancreatic adipose tissue and -cells as a novel mechanism that participates in the regulation of -cell plasticity. Here, we identify the secreted frizzled-related protein (Sfrp) 5 as down-regulated in the pancreatic islets of obese rats as well as in the pancreatic islets of human obese patients. Our results demonstrate that the silencing of Sfrp5 induces an increase in -cell proliferation, which we correlate with the activation of Wnt signaling and of the MAPK and PI3 kinase pathways. Together, these findings expand our understanding of the mechanisms underlying -cell proliferation under conditions of obesity. Furthermore, this study opens new insights into the specific targeting of Sfrp5 as a novel therapeutic strategy for balancing -cell mass.

Publication Title

Downregulation of Sfrp5 promotes beta cell proliferation during obesity in the rat.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44373
Gene expression profile in pancreatic islets from control rats fed a standard chow diet and obese rats fed a high-caloric cafeteria diet for 30 days.
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Changes in the secretion profile of visceral-pancreatic white adipose tissue (pWAT) due to diet-induced obesity are partially responsible for increased beta cell replication, suggesting that a crosstalk between pWAT and beta cells may play a role in regulating beta cell plasticity. The molecular mechanisms underlying this cross-talk are still not fully understood.

Publication Title

Downregulation of Sfrp5 promotes beta cell proliferation during obesity in the rat.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE80489
Transcript expression analysis of the NETotic neutrphils
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Neutrophils are short-lived innate immune cells. Upon encountering appropriate stimuli, neutrophils generate and release neutrophil extracellular traps (NETs), primarily via NADPH oxidase (Nox)-dependent (~2 hours) or Nox-independent NETosis (~15-60 minutes). Ironically, DNA transcription in dying neutrophils remains an enigma. We hypothesized that transcriptional activation, regulated by NETosis-specific kinases, is important to drive the chromatin decondensation necessary for NETosis. For the first time, we show here that (i) the degree of NETosis corresponds to the degree of genome-wide transcription; (ii) kinase-specific transcriptional activation reflects transcriptional firing during different types of NETosis; and (iii) Transcriptomics suggests that NETosis could differentially regulate inflammation. Therefore, we propose that the initial steps of transcriptional firing, but neither transcription per se help to drive NETosis.

Publication Title

Transcriptional firing helps to drive NETosis.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE44073
Liver X Receptors play an antitumoral role in the intestine
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE44071
Genome-wide analysis of gene expression profile of Intestinal (ILEUM) Tumors from APCmin/+/VP16LXRa vs APCmin/+/VP16
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Changes in gene expression profile of intestinal (ILEUM) Tumors from APCmin/+/VP16LXRa vs APCmin/+/VP16. The hypothesis tested in the present study was that LXRa overexpression influence cancer growth modulating lipid metabolism in cancer cells. Results provide the information that LXRa induces genes encoding proteins able to regulate cholesterol efflux.

Publication Title

Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP067643
Effect of high-sugar feeding on wandering third instar larval fat body gene expression in Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We compared gene expression in the Drosophila fat body on control and high-sugar diets in order to gain insight into the role of this organ during caloric overload. Differential expression analysis revealed changes in gene expression suggestive of a role for CoA metabolism in the ability to tolerate high-sugar feeding. This led us to perform biochemical and mutant studies supporting a model where CoA is limiting in the face of caloric overload. Overall design: Wild-type Drosophila were reared on control (0.15M sucrose) and high-sugar (0.7M sucrose) diets until the wandering stage. Fat bodies were isolated and RNA extracted to determine the effects of diet on gene expression using Illumina RNA-seq.

Publication Title

CoA protects against the deleterious effects of caloric overload in Drosophila.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact