refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 458 results
Sort by

Filters

Technology

Platform

accession-icon GSE79255
Gene-expression profiles after siRNA knockdown and overexpression of bromodomian containing 1 (BRD1) in HEK293T cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Background: The bromodomain containing 1 (BRD1) gene has been implicated with transcriptional regulation, brain development and susceptibility to schizophrenia and bipolar disorder.

Publication Title

Identification of the BRD1 interaction network and its impact on mental disorder risk.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE102403
CD24 regulates gene expression in pre-adipocytes in response to IBMX and Dexamethasone stimulation
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Previous in vitro studies in our lab have shown that CD24, a cell surface receptor, actively regulates lipid accumulation in adipocytes. But how CD24 regulates this process remains unknown. In order to answer this question, we initially tested to determine if CD24 regulates lipid accumulation by regulating glucose uptake in adipocytes in vitro. We observed that instead, CD24 caused the dysregulation of the expression of 134 genes as determined by DNA microarray analysis. We then validated the expression of select four genes, when CD24 is knocked down during the different stages of adipogenesis in 3T3-L1 pre-adipocytes in vitro. To further confirm the role of these genes, we then determined the expression patterns of these four genes in primary cells undergoing adipogenesis that were isolated from the epididymal and inguinal white adipose tissue depots of CD24 knockout mice. Surprisingly, we found that these genes were dysregulated in the inguinal but not the epididymal depot in vitro. Overall, the data presented here suggests that CD24 is necessary for select gene expression, but not glucose uptake, during adipogenesis in vitro.

Publication Title

CD24 is required for regulating gene expression, but not glucose uptake, during adipogenesis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE55889
Matrix Elasticity Does Not Affect Replicative Senescence or DNA Methylation Patterns of Mesenchymal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE55867
Matrix Elasticity Does Not Affect Replicative Senescence or DNA Methylation Patterns of Mesenchymal Stem Cells [gene expression profiling]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Matrix elasticity influences differentiation of mesenchymal stem cells (MSCs) but it is unclear if these effects are only transient - while the cells reside on the substrate - or if they reflect persistent lineage commitment. In this study, MSCs were continuously culture-expanded in parallel either on polydimethylsiloxane (PDMS) gels of different elasticity or on tissue culture plastic (TCP) to compare impact on replicative senescence, in vitro differentiation, gene expression, and DNA methylation (DNAm) profiles. The maximal number of cumulative population doublings was not affected by matrix elasticity. Differentiation towards adipogenic and osteogenic lineage was increased on soft and rigid biomaterials, respectively - but this propensity was no more evident if cells were transferred to TCP. Global gene expression profiles and DNAm profiles revealed relatively few differences in MSCs cultured on soft or rigid matrices. Furthermore, only moderate DNAm changes were observed upon culture on very soft hydrogels of human platelet lysate. Our results support the notion that matrix elasticity influences cellular differentiation while the cells are organized on the substrate, but it does not have major impact on cell-intrinsic lineage determination, replicative senescence or DNAm patterns.

Publication Title

Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP090509
Comparison of Eomes-negative and Eomes-positive human liver NK cells by RNASeq
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We sorted Eomes-negative NK cells (CD3- CD56+ CXCR6- CD16-) and Eomes-positive NK cells (CD3- CD56+ CXCR6+) from total leukocytes isolated from the perfusion fluid of five healthy human livers destined for transplantation. Total RNA was extracted from sorted cells, cDNA generated and RNASeq performed. Overall design: Examination of mRNA levels in paired Eomes-negative/Eomes-positive NK cells from the same donor.

Publication Title

Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE13911
Expression data from primary gastric tumors (MSI and MSS) and adjacent normal samples
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gastric cancers with mismatch repair (MMR) inactivation are characterised by microsatellite instability (MSI). In this study, the transcriptional profile of 38 gastric cancers with and without MSI was analysed.

Publication Title

Genome-wide expression profile of sporadic gastric cancers with microsatellite instability.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP162257
Cortisol acting through the glucocorticoid receptor is not responsible for exercise-enhanced growth but does affect the white skeletal muscle transcriptome in zebrafish (Danio rerio)
  • organism-icon Danio rerio
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Forced sustained swimming exercise at optimal speed enhances growth in many fish species, particularly through hypertrophy of the white skeletal muscle. The exact mechanism of this effect has not been resolved yet. To explore the mechanism, we first subjected wild-type zebrafish to an exercise protocol validated for exercise-enhanced growth, and showed that exercised zebrafish, which indeed showed enhanced growth, had higher cortisol levels than the non-exercised controls. A central role was therefore hypothesized for the steroid hormone cortisol acting through the Glucocorticoid receptor (Gr). Second, we subjected wild-type zebrafish and zebrafish with a mutant Gr to exercise at optimal, suboptimal and super-optimal speeds and compared them with non-exercised controls. Exercised zebrafish showed growth enhancement at all speeds, with highest growth at optimal speeds. In the Gr mutant fish, exercise resulted in growth enhancement similar to wild-type zebrafish, indicating that cortisol cannot be considered as a main determinant of exercise-enhanced growth. Finally, the transcriptome of white skeletal muscle tissue was analysed by RNA sequencing. The results of this analysis showed that in the muscle tissue of Gr mutant fish a lower number of genes is regulated by exercise than in wild-type fish (183 versus 351). A cluster of 36 genes was regulated by exercise in both wild-type and mutant fish. In this cluster, genes involved in transcriptional regulation and protein ubiquitination were overrepresented. Since growth was enhanced similarly in both wild-type fish and mutants, these processes may play an important role in exercise-enhanced growth. Overall design: Deep-sequencing transcriptome analysis of white muscle samples derived from wild-type (++) or glucocorticoid receptor (Gr) mutant (--) Danio rerio specimens that were exposed to either a resting (REST) or a swimming (UOPT) regimen: wild-type resting (REST++; n=3), Gr mutant resting (REST--; n=3), wild-type swimming (UOPT++; n=3), Gr mutant swimming (UOPT--; n=3).

Publication Title

Cortisol Acting Through the Glucocorticoid Receptor Is Not Involved in Exercise-Enhanced Growth, But Does Affect the White Skeletal Muscle Transcriptome in Zebrafish (<i>Danio rerio</i>).

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE78227
The maleless gene mitigates global aneuploid effect and evolutionary shift from X to autosomes
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

During sexual dimorphism, the loss of one entire X chromosome in Drosophila males is achieved largely via a broad genome-wide aneuploid effect. Exploring how MSL proteins and two large non coding RNAs (roX1 and roX2) modulate trans-acting aneuploid effect for equality to females, we employ a system biology approach (microarray) to investigate the global aneuploid effect of maleless(mle) mutation by disrupting MSL binding. A large number of the genes (144) that encode a broad spectrum of cellular transport proteins and transcription factors are located in the autosomes of Drosophila melanogaster.

Publication Title

Drosophila maleless gene counteracts X global aneuploid effects in males.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE107361
Early-onset pediatric atopic dermatitis is characterized by Th2/Th17/Th22- centered inflammation and lipid alterations
  • organism-icon Homo sapiens
  • sample-icon 103 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: While atopic dermatitis (AD) often starts in early childhood, detailed tissue profiling of early-onset AD in children is lacking, hindering therapeutic development for this patient population with a particularly high unmet need of better treatments.

Publication Title

Early-onset pediatric atopic dermatitis is characterized by T&lt;sub&gt;H&lt;/sub&gt;2/T&lt;sub&gt;H&lt;/sub&gt;17/T&lt;sub&gt;H&lt;/sub&gt;22-centered inflammation and lipid alterations.

Sample Metadata Fields

Sex, Age, Specimen part, Race

View Samples
accession-icon GSE108640
Ichthyosis molecular fingerprinting shows profound Th17-skewing and a unique barrier genomic signature
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The purpose of this study was to analyze the genomic signatures and profiles of skin from ichthyosis (various subtypes) vs. healthy patients. The analysis strategy was to study differentially expressed genes common to the ichthyosis shared phenotype, as well as individual ichthyosis subtypes, and compare and contrast to the genomic profiles of atopic dermatitis and psoriasis.

Publication Title

Ichthyosis molecular fingerprinting shows profound T&lt;sub&gt;H&lt;/sub&gt;17 skewing and a unique barrier genomic signature.

Sample Metadata Fields

Age, Specimen part, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact