refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 458 results
Sort by

Filters

Technology

Platform

accession-icon GSE54202
SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE54137
Genome-wide analysis of androgen receptor (AR) SUMOylation effects on gene expression (HEK293).
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Androgen receptor (AR) plays an important regulatory role during prostate cancer development. ARs transcriptional activity is regulated by androgenic ligands, but also by post-translational modifications. To study the role of the AR SUMOylation in genuine chromatin environment, we compared androgen-regulated gene expression and AR chromatin occupancy in PC-3 prostate cancer and HEK293 cell lines stably expressing wild-type (wt) or SUMOylation site-mutated AR (AR-K386R,K520R). Our genome-wide gene expression analyses reveal that the SUMOylation modulates the AR function in a target gene and pathway selective manner. The transcripts that are differentially regulated by androgen and SUMOylation are linked to cellular movement, cell death, cellular proliferation, cellular development and cell cycle. In line with these data, SUMOylation mutant AR cells proliferate faster and are more sensitive to apoptosis. Moreover, ChIP-seq analyses show that the SUMOylation modulates the chromatin occupancy of AR on many loci in a fashion that parallels with their differential androgen-regulated expression. De novo motif analyses show that other transcription factor-binding motifs are differentially enriched at the wtAR- and the AR-K386R,K520R-preferred genomic binding positions. Taken together, our data indicate that SUMOylation does not simply repress the AR activity, but it regulates ARs interaction with the chromatin and the receptors target gene selection.

Publication Title

SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE48379
SUMOylation Regulates the Anti-Proliferative Gene Signature Programs of Glucocorticoid Receptor
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE48328
SUMOylation Regulates the Anti-Proliferative Gene Signature Programs of Glucocorticoid Receptor (HEK293)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

In addition to the glucocorticoids, the glucocorticoid receptor (GR) is regulated by post-translational modifications, including SUMOylation. We have analyzed how SUMOylation influences the activity of endogenous GR target genes and the receptor chromatin binding by using isogenic HEK293 cells expressing wild-type GR (wtGR) or SUMOylation-defective GR (GR3KR). Gene expression profiling revealed that both dexamethasone up- and down-regulated genes are affected by the GR sumoylation and that the affected genes are significantly associated with pathways of cellular proliferation and survival. The GR3KR-expressing cells proliferated more rapidly and their anti-proliferative response to dexamethasone was less pronounced than in the wtGR-expressing cells. ChIP-seq analyses indicated that the SUMOylation modulates the chromatin occupancy of GR on several loci associated with cellular growth in a fashion which parallels with their differential dexamethasone-regulated expression between the two cell lines. Moreover, genome-wide SUMO-2/3 marks, which were generally associated with active chromatin, showed markedly higher overlap with the wtGR cistrome than with the GR3KR cistrome. In sum, our results indicate that the SUMOylation does not simply repress the GR activity, but regulates the activity of the receptor in a target locus selective fashion, playing an important role in controlling the GR activity on genes influencing cell growth.

Publication Title

SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE48330
SUMOylation Regulates the Anti-Proliferative Gene Signature Programs of Glucocorticoid Receptor (U2Os cell line)
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

In addition to the glucocorticoids, the glucocorticoid receptor (GR) is regulated by post-translational modifications, including SUMOylation. We have analyzed how SUMOylation influences the activity of endogenous GR target genes and the receptor chromatin binding by using isogenic HEK293 cells expressing wild-type GR (wtGR) or SUMOylation-defective GR (GR3KR). Gene expression profiling revealed that both dexamethasone up- and down-regulated genes are affected by the GR sumoylation and that the affected genes are significantly associated with pathways of cellular proliferation and survival. The GR3KR-expressing cells proliferated more rapidly and their anti-proliferative response to dexamethasone was less pronounced than in the wtGR-expressing cells. ChIP-seq analyses indicated that the SUMOylation modulates the chromatin occupancy of GR on several loci associated with cellular growth in a fashion which parallels with their differential dexamethasone-regulated expression between the two cell lines. Moreover, genome-wide SUMO-2/3 marks, which were generally associated with active chromatin, showed markedly higher overlap with the wtGR cistrome than with the GR3KR cistrome. In sum, our results indicate that the SUMOylation does not simply repress the GR activity, but regulates the activity of the receptor in a target locus selective fashion, playing an important role in controlling the GR activity on genes influencing cell growth.

Publication Title

SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon SRP078536
Analysis of active enhancers and direct androgen receptor target genes in VCaP prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Androgen receptor (AR) is typically overexpressed in castration-resistant prostate cancer (CRPC). CRPC-derived VCaP cells display an excessive number of chromatin AR-binding sites (ARBs). This study analyzed direct transcription programs of the AR, the prevalence of AR enhancers and the transcriptional regulators involved in the regulation of at the enhancer regions. The analysis utilized global nuclear run-on sequencing (GRO-seq). The GRO-seq data were integrated with the ARB and VCaP cell-specific transcription factor-binding data. Androgen in 30 min activated and repressed transcription of a large number of genes including novel AR targets IGF-1 receptor and EGF receptor. GRO-seq analysis also revealed that only a fraction of the ARBs resides at functional enhancers. Activation of AR bound enhancers was most potent at the sites that also bound PIAS1, ERG and HDAC3. Our genome-wide data provide new insights how AR can directly control growth-signaling pathways in CPRC cells. Overall design: ChIP-seq samples were collected from cells treated with vehicle (ethanol, EtOH) or 10 nM R1881 (synthetic androgen methyltrienolone). IgG sample was collected from EtOH- and R1881-treated cells and used as background control. Biological duplicate samples of the AR (R1881-treated) and CTCF (vehicle- and R1881-treated) ChIP-seq samples were analyzed by using Illumina HiSeq 2000 platform 1.9. Single IgG and H3K9me3 (R1881-treated) samples were analyzed with the same platform. GRO-seq was used to determine androgen-induced changes in nascent transcription in VCaP and LNCaP cells.

Publication Title

Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30316
Genome-wide analysis of the effect of PIAS1 knockdown by siRNA on the androgen regulated gene programs
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of PIAS1 co-regulation in the androgen signaling pathways in prostate cancer cell line.

Publication Title

SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE19972
Expression Data from Ectopic expression of SUMO-1 in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Transgenic C. elegans strains that express human SUMO-1 under the control of pan-neuronal (aex-3) or pan muscular (myo-4) promoters were assayed for gene expression changes.

Publication Title

Overexpression of SUMO perturbs the growth and development of Caenorhabditis elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62414
A dysregulated Acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Acetylation of transcriptional regulators is normally dynamically regulated by nutrient status but is often persistently elevated in nutrient-excessive obesity conditions. We investigated the functional consequences of such aberrantly elevated acetylation of the nuclear receptor FXR as a model. Proteomic studies identified K217 as the FXR acetylation site in diet-induced obese mice. In vivo studies utilizing acetylation-mimic and -defective K217 mutants and gene expression profiling revealed that FXR acetylation increased proinflammatory gene expression, macrophage infiltration, and liver cytokine and triglyceride levels, impaired insulin signaling, and increased glucose intolerance. Mechanistically, acetylation of FXR blocked its interaction with the SUMO ligase PIASy and inhibited SUMO2 modification at K277, resulting in activation of inflammatory genes. SUMOylation of agonist-activated FXR increased its interaction with NF-B but blocked that with RXR, so that SUMO2-modified FXR was selectively recruited to and trans-repressed inflammatory genes without affecting FXR/RXR target genes. A dysregulated Acetyl/SUMO switch of FXR in obesity may serve as a general mechanism for diminished anti-inflammatory response of other transcriptional regulators and provide potential therapeutic and diagnostic targets for obesity-related metabolic disorders.

Publication Title

A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP174051
TNF induces Glucocorticoid Resistance by reshaping the GR Nuclear Cofactor Profile: Investigation of TNF mediated effects on the GR mediated gene expression
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Glucocorticoid resistance (GCR) is defined as an unresponsiveness to the anti-inflammatory properties of glucocorticoids (GCs) and their receptor, the glucocorticoid receptor (GR). It is a serious problem in the management of inflammatory diseases and occurs frequently. The strong pro-inflammatory cytokine TNF induces an acute form of GCR, not only in mice, but also in several cell lines, e.g. in the hepatoma cell line BWTG3, as evidenced by impaired Dexamethasone (Dex)-induced GR-dependent gene expression. We report that TNF has a significant and broad impact on the transcriptional performance of GR, but no impact on nuclear translocation, dimerization or DNA binding capacity of GR. Proteome-wide proximity-mapping (BioID), however, revealed that the GR interactome is strongly modulated by TNF. One GR cofactor that interacts significantly less with the receptor under GCR conditions is p300. NF?B activation and p300 knockdown both reduce transcriptional output of GR, whereas p300 overexpression and NF?B inhibition revert TNF-induced GCR, which is in support of a cofactor reshuffle model. This hypothesis is supported by FRET studies. This mechanism of GCR opens new avenues for therapeutic interventions in GCR diseases Overall design: Examination of GR induced gene expression in 4 conditions (1 control: NI and 3 treated: DEX, TNF, TNFDEX) starting from 3 biological replicates

Publication Title

TNF-α inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact