In a broad range of organisms, Piwi-interacting RNAs (piRNAs) have emerged as core components of a surveillance system that protects the genome by silencing transposable and repetitive elements. A vast proportion of piRNAs is produced from discrete genomic loci, termed piRNA clusters. The molecular mechanisms and the factors that govern the expression of these loci are largely unknown. We have preciously shown the Cutoff (Cuff), a protein with similarity to yeast Rai1, is a component of the piRNA pathway. In order to understand the function of the Cuff protein in piRNA production, we produced small RNA libraries from cn, bw (wt) and cuffwm25 mutant ovaties. The analysis of these libraries revealed that approximately 80% of the total piRNA population is depleted in the absence of a functional Cuff protein. We also determined that Cuff is mostly a nuclear protein and is enriched at the level of certain piRNA clusters. Our results point to a role for Cuff in the transcriptional regulation of piRNA generating loci and in the production of the proper piRNA complement during Drosophila oogenesis. Overall design: piRNA profiling in ovaries from cn, bw and cuffwm25 mutant ovaries
The Cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline.
Specimen part, Subject
View SamplesThere are currently no biological tests that differentiate patients with bipolar disorder (BPD) from healthy controls. While there is evidence that peripheral gene expression differences between patients and controls can be utilized as biomarkers for psychiatric illness, it is unclear whether current use or residual effects of antipsychotic and mood stabilizer medication drives much of the differential transcription. We therefore tested whether expression changes in first-episode, never-medicated bipolar patients, can contribute to a biological classifier that is less influenced by medication and could potentially form a practicable biomarker assay for BPD.
Utilization of never-medicated bipolar disorder patients towards development and validation of a peripheral biomarker profile.
Sex, Age, Specimen part
View SamplesAsthma is a chronic inflammatory respiratory disease affecting over 300 million people around the world. Some asthma patients remain poorly controlled by conventional therapies and experience more life-threatening exacerbations. While patients with severe, refractory disease represent a heterogeneous group, a feature shared by most includes glucocorticoid insensitivity. We sought to characterize differences in the airway smooth muscle transcriptome response to glucocorticoids in fatal asthma vs. non-asthma donors. RNA-Seq was used to measure airway smooth muscle transcript expression differences between 9 donors with fatal asthma and 8 non-asthma donors. Cells from each donor were treated with budesonide or with vehicle control. Poly(A)-selected RNA-Seq libraries were prepared with the Illumina TruSeq method. An Illumina HiSeq 2500 instrument was used to generate 125 base pair paired-end reads. Overall design: Transcriptome profiles obtained via RNA-Seq for airway smooth muscle cells from 9 fatal asthma and 8 non-asthma donors treated with budesonide (100nM for 24h) or vehicle control were compared
Airway Smooth Muscle-Specific Transcriptomic Signatures of Glucocorticoid Exposure.
Specimen part, Disease, Disease stage, Treatment, Subject
View SamplesNotch signaling is widely implicated in mouse mammary gland development and tumorigenesis. To investigate the effects of acute activation of Notch signaling in the mammary epithelial compartment, we generated bi-transgenic MMTV-rtTA; TetO-NICD1 (MTB/TICNX) mice that conditionally express a constitutively active NOTCH1 intracellular domain (NICD1) construct in the mammary epithelium upon doxycycline administration.
Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy.
Sex, Age, Specimen part, Treatment, Time
View SamplesPotassium is one of the essential macronutrients required for plant growth and development. It plays a major role in different physiological processes like cell elongation, stomatal movement, turgor regulation, osmotic adjustment, and signal transduction by acting as a major osmolyte and component of the ionic environment in the cytosol and subcellular organelles.
Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components.
Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice.
Specimen part
View SamplesGb5 is a divergent, evolutionarily-conserved, member of the heterotrimeric G protein b subunit family that is expressed principally in brain and neuronal tissue. Among Gb isoforms, Gb5 is unique in its ability to heterodimerize with members of the R7 subfamily of the regulator of G protein signaling (RGS) proteins that contain G protein-g like (GGL) domains. Previous studies employing Gb5 knockout mice have shown that Gb5 is an essential stabilizer of GGL domain-containing RGS proteins and regulates the deactivation of retinal phototransduction and the proper functioning of retinal bipolar cells. The purpose of this study is to better understand the functions of Gb5 in the brain outside the visual system by employing molecular biology, immunohistochemistry and confocal imaging technologies. We show here that mice lacking Gb5 have a markedly abnormal neurologic phenotype that includes neurobehavioral developmental delay, wide-based gait, motor learning and coordination deficiencies, and hyperactivity. Using immunohistochemical analysis and a green fluorescent reporter of Purkinje cell maturation we show that the phenotype of Gb5-deficient mice includes, in part, delayed development of the cerebellar cortex, an abnormality that likely contributes to the neurobehavioral phenotype. Multiple neuronally-expressed genes are dysregulated in non-cerebellar portion of Gb5 KO mice.
Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice.
Specimen part
View SamplesGb5 is a divergent, evolutionarily-conserved, member of the heterotrimeric G protein b subunit family that is expressed principally in brain and neuronal tissue. Among Gb isoforms, Gb5 is unique in its ability to heterodimerize with members of the R7 subfamily of the regulator of G protein signaling (RGS) proteins that contain G protein-g like (GGL) domains. Previous studies employing Gb5 knockout mice have shown that Gb5 is an essential stabilizer of GGL domain-containing RGS proteins and regulates the deactivation of retinal phototransduction and the proper functioning of retinal bipolar cells. The purpose of this study is to better understand the functions of Gb5 in the brain outside the visual system by employing molecular biology, immunohistochemistry and confocal imaging technologies. We show here that mice lacking Gb5 have a markedly abnormal neurologic phenotype that includes neurobehavioral developmental delay, wide-based gait, motor learning and coordination deficiencies, and hyperactivity. Using immunohistochemical analysis and a green fluorescent reporter of Purkinje cell maturation we show that the phenotype of Gb5-deficient mice includes, in part, delayed development of the cerebellar cortex, an abnormality that likely contributes to the neurobehavioral phenotype. Multiple neuronally-expressed genes are dysregulated in cerebellum of Gb5 KO mice.
Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice.
Specimen part
View SamplesThe pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: Semi-nascent transcriptome measured by chromatin-bound RNA-seq in HeLa cells. Control and PCF11 knock-down (2 biological replicates) and control and PCF11 PAS1 deletion (4 biological replicates).
Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.
Specimen part, Subject
View SamplesThe pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: 3' mRNA-seq in individual zebrafish embryo heads. Two types of mutants: zPCF11 null and zPCF11 with deletion of PAS1. Wild-type (wt, +/+), heterozygous (het, +/-) and homozygous mutant (hom, -/-) embryos were analyzed. Wild-type and heterozygous animals were phenotypically indistinguishable.
Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.
Subject
View Samples