RNA editing is a mutational mechanism that specifically alters the nucleotide content in sets of transcripts while leaving their cognate genomic blueprint intact. Editing has been detected from bulk RNA-seq data in thousands of distinct transcripts, but apparent editing rates can vary widely (from under 1% to almost 100%). These observed editing rates could result from approximately equal rates of editing within each individual cell in the bulk sample, or alternatively, editing estimates from a population of cells could reflect an average of distinct, biologically significant editing signatures that vary substantially between individual cells in the population. To distinguish between these two possibilities we have constructed a hierarchical Bayesian model which quantifies the variance of editing rates at specific sites using RNA-seq data from both single cells and a cognate bulk sample consisting of ~ 106 cells. The model was applied to data from murine bone-marrow derived macrophages and dendritic cells, and predicted high variance for specific edited sites in both cell types tested. We then 1 validated these predictions using targeted amplification of specific editable transcripts from individual macrophages. Our data demonstrate substantial variance in editing signatures between single cells, supporting the notion that RNA editing generates diversity within cellular populations. Such editing-mediated RNA-level sequence diversity could contribute to the functional heterogeneity apparent in cells of the innate immune system. Overall design: 26 samples were subjected to RNA-seq: 24 single WT macrophages, and 2 bulk samples (Apobec1 WT and KO macrophages), consisting of 500,000-1 million cells each.
RNA editing generates cellular subsets with diverse sequence within populations.
Specimen part, Cell line, Subject
View SamplesWe aimed to determine the impact of the common mutations on the transcriptome in myelodysplastic syndromes (MDS). We linked genomic data with gene expression microarray data and we deconvoluted the expression of genes into contributions stemming from each genetic and cytogenetic alteration, providing insights into how driver mutations interfere with the transcriptomic state. We modelled the influence of mutations and expression changes on diagnostic clinical variables as well as survival.
Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes.
Specimen part, Disease
View SamplesThe splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndromes (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34+ cells from MDS patients with SF3B1 mutations using RNA-sequencing. Genes significantly differentially expressed at the transcript and/or exon level in SF3B1 mutant compared to wildtype cases include genes involved in MDS pathogenesis (ASXL1, CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7, SLC25A37) and RNA splicing/processing (PRPF8, HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expression/splicing in SF3B1 mutant cases. Our data indicate that SF3B1 plays a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processes/pathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link. Overall design: RNA-Seq was performed to compare the transcriptome of bone marrow CD34+ cells from eight MDS patients with SF3B1 mutation, four MDS patients with no known splicing mutation and five healthy controls.
Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells.
No sample metadata fields
View SamplesUnderstanding the specific cell populations responsible for propagation of leukemia is an important step for development of effective targeted therapies. Recently, the lymphoid-primed multipotent progenitor (LMPP) has been proposed to be a key propagating population in acute myeloid leukemia (AML; PMID 21251617). We have also shown that LMPPs share many functional and gene expression properties with early thymic progenitors (ETPs; PMID 22344248). This finding is of particular interest as ETP leukemias have recently been described: a distinct and poor prognostic disease entity with a transcriptional profile reminiscent of murine ETPs, showing co-expression of hematopoietic stem cell (HSC) and myeloid markers (PMID 19147408). Together, this raises the question whether ETPs can act as a leukemia-initiating/propagating cell population; however, relevant disease models to test this hypothesis are currently lacking. Analysis of the genetic landscape of ETP leukemias has revealed frequent coexistence of inactivating mutations of EZH2 and RUNX1 (PMID 22237106). We therefore generated mice with deletions of Ezh2 and Runx1 specifically targeted to early lymphoid progenitors using Rag1Cre (Ezh2fl/flRunx1fl/flRag1Cre+; DKO mice). As anticipated, HSCs lacked significant recombination in DKO mice whereas close to 100% of purified ETPs (Lin-CD4-CD8-CD44+CD25-Kit+Flt3+) showed deletion of Ezh2 and Runx1. Strikingly, despite a 16-fold reduction in thymus cellularity caused by a block in thymocyte maturation at the DN2-DN3 transition, absolute numbers of ETPs within the thymus of DKO mice were markedly expanded (12-fold; p<0.0001). In contrast, Ezh2 or Runx1 deletion alone had no impact on numbers of ETPs. RNA-sequencing of the expanded ETPs in DKO mice revealed upregulation of HSC- and myeloid-associated transcriptional programs, reminiscent of ETP leukaemia e.g. Pbx1 (log2FC=3.0; p<0.0001) and Csf3r (log2FC=1.9; p=0.0038). Single-cell gene expression analysis confirmed co-expression of HSC and myeloid programs with lymphoid genes within individual DKO ETPs. Further, some key regulators of T-cell maturation which are aberrantly expressed in ETP leukemia were also disrupted in DKO ETPs e.g. Tcf7 (log2FC=-9.5; p<0.0001). Gene expression associated with aberrant Ras signalling was also present. However, despite a continued expansion of the ETP population with age, we did not observe leukemia in DKO mice with over 1 year of follow-up. Since ETP leukemias frequently feature activating mutations in genes regulating RAS signaling, we hypothesised that the expanded “pre-leukemic” ETPs in DKO mice would be primed for leukemic transformation by signalling pathway mutation. We therefore crossed DKO mice with a Flt3ITD/+ knock-in mouse line, as internal tandem duplications (ITD) of FLT3 are frequent in ETP leukemias. Ezh2fl/flRunx1fl/flRag1Cre+Flt3ITD/+ (DKOITD) mice showed dramatically reduced survival (median 9.3 weeks) resulting from an aggressive, fully penetrant acute leukemia showing a predominantly myeloid phenotype (e.g. Mac1) but with co-expression of some lymphoid antigens (e.g. intracellular CD3). Crucially, this leukaemia could be propagated in wild-type recipients upon transplantation of the expanded ETPs. DKOITD ETPs were transcriptionally very similar to DKO ETPs, retaining expression of lymphoid alongside HSC- and myeloid-associated genes. Finally, in a lympho-myeloid cell line model (EML cells) we demonstrated that Ezh2 inactivation-induced loss of H3K27me3 is associated with a corresponding increase in H3K27Ac, a transcriptional activating signal that recruits bromodomain proteins. As such, we reasoned that our ETP leukemia model might be sensitive to bromodomain inhibitors such as JQ1. Indeed, we observed high sensitivity of expanded DKOITD ETPs to JQ1, raising the possibility of a new therapeutic approach for ETP leukemias. This novel mouse model of ETP-propagated leukemia, driven by clinically relevant mutations, provides intriguing evidence that leukemias with a predominant myeloid phenotype, but co-expressing lymphoid genes, may initiate within a bona fide early lymphoid progenitor population. Since the functional characteristics of the cell of origin of a leukaemia may direct its progression and response to therapy, these findings could have important implications for future stratification and treatment of both AML and ETP leukemias. Overall design: mRNA-sequencing of mouse Mac1+ bone marrow cells from three genotypes
Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.
Cell line, Subject
View SamplesUnderstanding the specific cell populations responsible for propagation of leukemia is an important step for development of effective targeted therapies. Recently, the lymphoid-primed multipotent progenitor (LMPP) has been proposed to be a key propagating population in acute myeloid leukemia (AML; PMID 21251617). We have also shown that LMPPs share many functional and gene expression properties with early thymic progenitors (ETPs; PMID 22344248). This finding is of particular interest as ETP leukemias have recently been described: a distinct and poor prognostic disease entity with a transcriptional profile reminiscent of murine ETPs, showing co-expression of hematopoietic stem cell (HSC) and myeloid markers (PMID 19147408). Together, this raises the question whether ETPs can act as a leukemia-initiating/propagating cell population; however, relevant disease models to test this hypothesis are currently lacking. Analysis of the genetic landscape of ETP leukemias has revealed frequent coexistence of inactivating mutations of EZH2 and RUNX1 (PMID 22237106). We therefore generated mice with deletions of Ezh2 and Runx1 specifically targeted to early lymphoid progenitors using Rag1Cre (Ezh2fl/flRunx1fl/flRag1Cre+; DKO mice). As anticipated, HSCs lacked significant recombination in DKO mice whereas close to 100% of purified ETPs (Lin-CD4-CD8-CD44+CD25-Kit+Flt3+) showed deletion of Ezh2 and Runx1. Strikingly, despite a 16-fold reduction in thymus cellularity caused by a block in thymocyte maturation at the DN2-DN3 transition, absolute numbers of ETPs within the thymus of DKO mice were markedly expanded (12-fold; p<0.0001). In contrast, Ezh2 or Runx1 deletion alone had no impact on numbers of ETPs. RNA-sequencing of the expanded ETPs in DKO mice revealed upregulation of HSC- and myeloid-associated transcriptional programs, reminiscent of ETP leukaemia e.g. Pbx1 (log2FC=3.0; p<0.0001) and Csf3r (log2FC=1.9; p=0.0038). Single-cell gene expression analysis confirmed co-expression of HSC and myeloid programs with lymphoid genes within individual DKO ETPs. Further, some key regulators of T-cell maturation which are aberrantly expressed in ETP leukemia were also disrupted in DKO ETPs e.g. Tcf7 (log2FC=-9.5; p<0.0001). Gene expression associated with aberrant Ras signalling was also present. However, despite a continued expansion of the ETP population with age, we did not observe leukemia in DKO mice with over 1 year of follow-up. Since ETP leukemias frequently feature activating mutations in genes regulating RAS signaling, we hypothesised that the expanded “pre-leukemic” ETPs in DKO mice would be primed for leukemic transformation by signalling pathway mutation. We therefore crossed DKO mice with a Flt3ITD/+ knock-in mouse line, as internal tandem duplications (ITD) of FLT3 are frequent in ETP leukemias. Ezh2fl/flRunx1fl/flRag1Cre+Flt3ITD/+ (DKOITD) mice showed dramatically reduced survival (median 9.3 weeks) resulting from an aggressive, fully penetrant acute leukemia showing a predominantly myeloid phenotype (e.g. Mac1) but with co-expression of some lymphoid antigens (e.g. intracellular CD3). Crucially, this leukaemia could be propagated in wild-type recipients upon transplantation of the expanded ETPs. DKOITD ETPs were transcriptionally very similar to DKO ETPs, retaining expression of lymphoid alongside HSC- and myeloid-associated genes. Finally, in a lympho-myeloid cell line model (EML cells) we demonstrated that Ezh2 inactivation-induced loss of H3K27me3 is associated with a corresponding increase in H3K27Ac, a transcriptional activating signal that recruits bromodomain proteins. As such, we reasoned that our ETP leukemia model might be sensitive to bromodomain inhibitors such as JQ1. Indeed, we observed high sensitivity of expanded DKOITD ETPs to JQ1, raising the possibility of a new therapeutic approach for ETP leukemias. This novel mouse model of ETP-propagated leukemia, driven by clinically relevant mutations, provides intriguing evidence that leukemias with a predominant myeloid phenotype, but co-expressing lymphoid genes, may initiate within a bona fide early lymphoid progenitor population. Since the functional characteristics of the cell of origin of a leukaemia may direct its progression and response to therapy, these findings could have important implications for future stratification and treatment of both AML and ETP leukemias. Overall design: mRNA-sequencing of mouse early thymic precursors from three genotypes
Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.
Cell line, Subject
View SamplesAssessment of the putative differential gene expression profiles in high osmolality-treated bovine nucleus pulposus intervertebral disc cells for a short (5 h) and a long (24 h) time period. Identification of novel genes up- or down-regulated as an early or a late response to hyperosmotic stress.
Deficiency in the α1 subunit of Na+/K+-ATPase enhances the anti-proliferative effect of high osmolality in nucleus pulposus intervertebral disc cells.
Specimen part
View SamplesThe metabolic syndrome (MetS) is characterized by the presence of metabolic abnormalities that include abdominal obesity, dyslipidemia, hypertension, increased blood glucose/insulin resistance, hypertriglyceridemia and increased risk for cardiovascular disease (CVD). The ApoE*3Leiden.human Cholesteryl Ester Transfer Protein (ApoE3L.CETP) mouse model manifests several features of the MetS upon high fat diet (HFD) feeding. Moreover, the physiological changes in the white adipose tissue (WAT) contribute to MetS comorbidities. The aim of this study was to identify transcriptomic signatures in the gonadal WAT of ApoE3L.CETP mice in discrete stages of diet-induced MetS.
Transcriptome analysis of the adipose tissue in a mouse model of metabolic syndrome identifies gene signatures related to disease pathogenesis.
Sex, Age, Specimen part
View SamplesBackground: Acute myeloid leukemia (AML) is driven by somatic mutations and genomic rearrangements affecting >20 genes. Many of these are recent discoveries and how this molecular heterogeneity dictates AML pathophysiology and clinical outcome remains unclear. Methods: We sequenced 111 leukemia genes for driver mutations in 1540 AML patients with cytogenetic and clinical data. We modeled AMLs genomic structure, defining genetic interactions, patterns of temporal evolution and clinical correlations. Results: We identified 5,236 driver mutations involving 77 loci, including hotspot mutations in MYC. We found 1 driver mutation in 96% patients, and 2 in 85%. Gene mutations implicated in age related clonal hematopoiesis (DNMT3A, ASXL1, TET2) were the earliest in AML evolution, followed by highly specific and ordered patterns of co-mutation in chromatin, transcription and splicing regulators, NPM1 and signaling genes. The patterns of co-mutation compartmentalize AML into 12 discrete molecular classes, each presenting with distinct clinical manifestation. Amongst these, mutations in chromatin and spliceosome genes demarcate a molecularly heterogeneous subgroup enriched for older AML patients currently classified as intermediate risk and results in adverse prognosis. Two- and three-way genetic interactions often implicating rare genes/mutation-hotspots, markedly redefined clinical response and long-term curability, with the NPM1:DNMT3A:FLT3ITD genotype (6% patients) identifying poor prognosis disease, whereas within the same class NPM1:DNMT3A:NRASG12/13 (3%) associated with favorable outlooks. Conclusions: 79% of AML is molecularly classified in 12 genomic subgroups. These represent distinct molecular phylogenies, implicating complex genotypes. Delineation of higher-order genomic relationships, guide the development of personally tailored classification, prognostication and clinical protocols. Similar studies across cancer types are warranted.
Genomic Classification and Prognosis in Acute Myeloid Leukemia.
Specimen part, Disease
View SamplesRNA-Seq analysis of atypical chronic myeloid leukemia samples Overall design: We sequenced leukemic mRNA from 13 Atypical Cronic Mieloid Leukemia (aCML) samples by Illumina GAIIx. Transcriptomic profiles, differentially expressed genes and pathway enrichment analysis were obtained comparing 7 SETBP1-mutated samples and 6 non-mutated (WT) samples by using TopHat aligner and SAMMate gene expression quantifier. We focused on the gene expression profile of known coding transcripts. A dataset of 20,907 protein-coding Ensembl Genes was obtained from the RNA-Seq by using the Human Ensembl GTF annotation file vs54 dowloaded from ftp://ftp.ensembl.org/pub/release-54/gtf/homo_sapiens/.
Recurrent SETBP1 mutations in atypical chronic myeloid leukemia.
Subject
View SamplesSF3B1, SRSF2 and U2AF1 are the most frequently mutated splicing factor genes in MDS. We have performed a comprehensive analysis to determine the impact of these commonly mutated splicing factors on pre-mRNA splicing in the stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in bone marrow CD34+ cells of a large group of 82 MDS patients. Splicing factor mutations in MDS result in different mechanistic alterations in splicing and largely affect different genes, but these converged in common dysregulated pathways and cellular processes, including RNA splicing, translation and mitochondrial dysfunction, indicating that these mutations operate through common mechanisms in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology and to the phenotypes associated with splicing factor mutations in MDS, whilst several others have not been previously associated with MDS, such as sirtuin signalling. Overall design: RNA-sequencing was performed on bone marrow CD34+ hematopoeitic stem and progenitor cells from patients with myelodysplastic syndrome and healthy controls to identify differential splicing between samples with mutations in the splicing factor SF3B1, SRSF2 or U2AF1 comparative to samples from myelodysplactic syndrome patients without mutations in these splicing factors and healthy controls. Processed data for the CD34+ hematopoeitic stem and progenitor cells are available in the files: CPM_table.txt.gz, Count_table.txt.gz and TPM_table.txt.gz. RNA-sequencing was also performed on monocytic, granulocytic and erythroid precursors from the bone marrow of patients with myelodysplastic syndrome and healthy controls to identify aberrant splicing in samples with mutations in splicing factors SF3B1 and SRSF2 comparative from healthy controls. Processed data for the monocytic, granulocytic and erythroid precursors are available in the files: CPM_table_fractions.txt, Count_table_fractions.txt and TPM_table_fractions.txt.
Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations.
Specimen part, Disease, Subject
View Samples