We used microarray to detect pathway differences in the various brain regions in a monogenic in mucopolysaccharidosis type VII ( MPS VII ), a mouse model of a lysosomal storage disease
Dysregulation of gene expression in a lysosomal storage disease varies between brain regions implicating unexpected mechanisms of neuropathology.
Specimen part
View SamplesWe used microarray to detect pathway differences in the hippocampus in mucopolysaccharidosis type VII ( MPS VII ), a mouse model of a lysosomal storage disease
Integrated analysis of proteome and transcriptome changes in the mucopolysaccharidosis type VII mouse hippocampus.
Sex, Age, Specimen part
View SamplesWhile the reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, they also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established alongside the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. Several studies have shown that endodermal genes are upregulated in fibroblasts undergoing reprogramming, although whether endodermal genes promote or inhibit acquisition of pluripotency is unclear. We show that, in fibroblasts undergoing conventional reprogramming, OSKM-induced expression of endodermal genes leads to formation of induced XEN (iXEN) cells, which possess key properties of blastocyst-derived XEN cells, including morphology, transcription profile, self-renewal, and multipotency. Our data show that iXEN cells arise in parallel to iPS cells, indicating that OSKM are sufficient to drive cells to two distinct fates during reprogramming. Overall design: Sequence-based mRNA transcriptional profiling of three different cell lines (MEF, XEN, iXEN) with multiple biological replicates, under two different growth medium conditions (ESC medium, XEN medium) for XEN and iXEN cells.
OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells.
Specimen part, Treatment, Subject
View SamplesComparison of transcriptional and translational regulation upon hepatocytic diffentiation by Total RNA and polysome bound RNA profiling.
Translational control plays a prominent role in the hepatocytic differentiation of HepaRG liver progenitor cells.
Sex, Age, Specimen part, Cell line, Time
View SamplesSeveral reports indicate that mesalazine (5-aminosalicylic acid or 5-ASA) is a promising candidate for the chemoprevention of Colo-Rectal Cancer (CRC) due to its ability to reach the purpose, yet avoiding at the same time the side effects that are usually determined by prolonged administrations of Non Steroidal Anti-Inflammatory Drugs. This activity of 5-ASA is probably the consequence of a number of effects determined on colon cancer cells and consisting of reduced proliferation, increased apoptosis and activation of cell cycle checkpoints. A recent observation has suggested that these effects could be mediated by the capacity of 5-ASA to interfere with the nuclear translocation of beta-catenin, in turn responsible for the inhibition of its transcription activity. The aim of our study was to better characterize the molecular mechanism by which 5-ASA inhibits the beta-catenin signaling pathway. To address this issue we assessed, by means of the Affymetrix microarray methodology, the transcriptome changes determined on Caco2 cells by a 96 h treatment with 20 mM mesalazine.
Mesalazine inhibits the beta-catenin signalling pathway acting through the upregulation of mu-protocadherin gene in colo-rectal cancer cells.
No sample metadata fields
View SamplesComparison of Total RNA and Polysome-bound RNA populations in deltaTOR containing cells and control cells upon hepatocyitc differentiation.
Mammalian target of rapamycin activation impairs hepatocytic differentiation and targets genes moderating lipid homeostasis and hepatocellular growth.
Specimen part, Cell line
View SamplesThe heterogeneity of cortical dopamine D2 receptor expressing cells is not well characterized
High Sensitivity Mapping of Cortical Dopamine D2 Receptor Expressing Neurons.
Specimen part
View SamplesHuman Natural Killer (NK) cells comprise two main subsets, CD56bright and CD56dim cells, that differ in function, phenotype and tissue localization. To further dissect the heterogeneity of CD56dim cells, we have performed transcriptome analysis and functional ex vivo characterization of human NK cell subsets according to the expression of markers related to differentiation, migration or competence. Here, we show for the first time that the ability to respond to cytokines or to activating receptors is mutually exclusive in almost all NK cells with the exception of CD56dim CD62L+ cells. Indeed, only these cells combine the ability to produce interferon (IFN)-gamma after cytokines and proliferate in vivo during viral infection with the capacity to kill and produce cytokines upon engagement of activating receptors. Therefore, CD56dim CD62L+ cells represent a unique subset of polyfunctional NK cells. Ex vivo analysis of their function, phenotype, telomere length, frequencies during ageing as well as transfer experiments of NK cell subsets into immunodeficient mice suggest that CD56dim CD62L+ cells represent an intermediate stage of NK cell maturation, which after restimulation can accomplish multiple tasks and further develop into terminally differentiated effectors.
CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells.
Specimen part
View Samples5-methylcytosine (5mC) regulates multiple cellular processes and is faithfully maintained following DNA replication. Ubiquitin-like PHD and ring finger domain-containing protein 1 (UHRF1) plays an important role in the maintenance of 5mC levels. Interestingly, UHRF1 has a paralog UHRF2 that has similar sequence and domain architecture, but the biological function of UHRF2 is not clear. Here, we have generated Uhrf2 knockout mice and characterized the role of UHRF2 in vivo. Uhrf2 knockout mice are viable, but the adult mice develop frequent spontaneous seizures and display abnormal electrical activities in brain. To explore possible mechanism beyond these phenomenon, we utilized high-throughput sequencing to identify global expression changes in Uhrf2 knockout mice brains. In addition, we explored genome-wide 5mc profiles in these samples to examine if UHRF2 regulates 5mc levels in specific genome loci. Overall design: Examination of global gene expressions in brains of wild type and Uhrf2 knockout mice by RNA-seq.
UHRF2 regulates local 5-methylcytosine and suppresses spontaneous seizures.
Specimen part, Subject
View SamplesIdentification of intrathymic Eomes+ natural Th1 cells creates a novel idea that there is more than one way for the generation of innate CD4 T cells. To more deeply characterize this type of innate T cells, we compared the gene expression profile between nTh1 cells generated in CIITAtg mice and classic Th1 cells differentiated from naive CD4 T cells in Th1-polarizing condition.
Thymic low affinity/avidity interaction selects natural Th1 cells.
Age, Specimen part
View Samples