Arabidopsis thaliana MYB80 (formerly MYB103) is expressed in the tapetum and microspores between anther developmental stages 6 and 10. MYB80 encodes a MYB transcription factor that is essential for tapetal and pollen development. In order to identify the genes regulated by MYB80, microarray technology was employed to analyze the expression levels of genes that were differentially regulated in the myb80 mutant and wild- type anthers.
The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana.
Specimen part
View SamplesThe study has been described in the following paper: Gianni Parise, Stuart M. Phillips, Jan J. Kaczor and Mark A. Tarnopolsky (2005). Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radical Biology and Medicine, Volume 39, Issue 2, 15 July 2005, Pages 289-295 We cite the following three paragraphs from this paper: "MATERIALS AND METHODS Subjects Twelve men (71.2 ± 6.5 y) volunteered to participate in a 12 week uni-lateral leg resistance training program (Table 1). All subjects underwent a thorough screening process before being admitted into the study. Subjects were first screened by telephone, and were then subject to a medical evaluation. Consent from their family physician was required, and then all potential subjects underwent a resting electrocardiogram, and a sub-maximal graded exercise test on a bicycle ergometer witih a 12-lead ECG. Exclusion criteria included: evidence of coronary hear disease; congestive heart failure; uncontrolled hypertension; chronic obstructive pulmonary disease; diabetes mellitus; renal failure; major orthopaedic disability; and smoking. None of the subjects had ever participated in a structured exercise program. After subjects were advised of the benefits and risks of participation, subjects gave their written informed consent. The study was approved by the McMaster University and Hamilton Health Sciences Research Ethics Board and conferred to the principles of the declaration of Helsinki. Exercise Training Resistance training was performed three times weekly on non-consecutive days (Monday, Wednesday, and Friday) for 12 weeks, under strict supervision. Prior to and after each training session subjects were required to perform passive stretching. Resistance exercise for each session consisted of 3 sets of 10 repetitions for each of leg press and leg extension. Training progressed from one set of each exercise at 50% of the initial 1 repetition maximum (1RM) to 3 sets at 80% of 1RM over the training period. Training logs were kept to record the volume and intensity of each session. The 1RM was re-evaluated every 2 weeks, and the training load was adjusted accordingly. All exercises were performed on universal strength training equipment (Universal Gym Equipment, Inc., Cedar Rapids, Iowa). Muscle Biopsy A muscle biopsy was taken from the vastus lateralis muscle of both legs before as well as after the training period, 20 cm proximal to the knee joint using a modified Bergström needle (5 mm diameter) with suction modification. The biopsy specimen was dissected of fat and connective tissue and immediately frozen in liquid nitrogen. All samples were stored at -80 °C for subsequent analysis. All subjects were required to abstain from strenuous physical activity for 48 hours prior to the testing session. The non-trained leg performed an acute bout of exercise at the same relative intensity of the training leg to allow for the determination of the effect of training and the effect of acute resistance exercise." Additional Notes: 1) The samples of 8 out 12 were used in the gene expression study. 2) The 2 factors in this study are: 2.1) Leg - Left or Right 2.2) Training - Baseline: samples taken on each leg before exercise - Resistance Training: one of the legs was subject to resistance training followed by acute exercise - Acute Exercise: the other leg had only the acute exercise 3) The baseline samples will be used for right versus left leg comparison to see variance between legs for human experimentation technical issues. The samples from Resistance or Acute Exercise will be compared to corresponding baseline samples to evaluate the effect of both exercise programs on gene expression.
Gene expression, fiber type, and strength are similar between left and right legs in older adults.
Sex, Age, Specimen part, Subject
View SamplesIdentifying the effect of the co-regulator Hic-5 (TGFB1I1) and TGFB on the transcriptional profile of WPMY human prostate fibroblast cells with view to further elucidating the broader biological role of Hic-5 and TGFB on fibroblast.
VDR activity is differentially affected by Hic-5 in prostate cancer and stromal cells.
Specimen part, Cell line, Treatment
View SamplesWe show that N6-methyladenosine (m6A), the most abundant internal modification in mRNA/lncRNA with still poorly characterized function, alters RNA structure to facilitate the access of RBM for heterogeneous nuclear ribonucleoprotein C (hnRNP C). We term this mechanism m6A-switch. Through combining PAR-CLIP with Me-RIP, we identify 39,060 m6A-switches among hnRNP C binding sites transcriptome-wide. We show that m6A-methyltransferases METTL3 or METTL14 knockdown decreases hnRNP C binding at 16,582 m6A-switches. Taken together, 2,798 m6A-switches of high confidence are identified to mediate RNA-hnRNP C interactions and affect diverse biological processes including cell cycle regulation. These findings reveal the biological importance of m6A and provide insights into the sophisticated regulation of RNA-RBP interactions through m6A-induced RNA structural remodeling. Overall design: Measure the m6A methylated hnRNP C binding sites transcriptome-wide by PARCLIP-MeRIP; measure the differential hnRNP C occupancies upon METTL3/METTL14 knockdown by PAR-CLIP; measure RNA abundance and splicing level changes upon HNRNPC, METTL3 and METTL14 knockdown
N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions.
No sample metadata fields
View SamplesMYB-bHLH-TTG1 regulates Arabidopsis seed coat biosynthesis pathways directly and indirectly via multiple tiers of transcription factors
MYB-bHLH-TTG1 Regulates Arabidopsis Seed Coat Biosynthesis Pathways Directly and Indirectly via Multiple Tiers of Transcription Factors.
Specimen part
View SamplesIt is currently unknown how extensively the double-stranded RNA binding protein Staufen (Stau)1 is utilized by mammalian cells to regulate gene expression. To date, Stau1 binding to the 3 untranslated region (3UTR) of ARF1 mRNA has been shown to target ARF1 mRNA for Stau1-mediated mRNA decay (SMD). ARF1 SMD depends on translation and recruitment of the nonsense-mediated mRNA decay factor Upf1 to the ARF1 3UTR by Stau1. Here, we use microarray analyses to examine changes in the abundance of cellular mRNAs that occur when Stau1 is depleted. Results indicate that 1.1% and 1.0% of the 11,569 HeLa-cell transcripts that were analyzed are, respectively, upregulated and downregulated at least two-fold in three independently performed experiments. Additionally, we localize the Stau1 binding site to the 3UTR of four mRNAs that we define as natural SMD targets. Together, these and substantiating results suggest that Stau1 influences the expression of a wide variety of physiologic transcripts and metabolic pathways.
Staufen1 regulates diverse classes of mammalian transcripts.
No sample metadata fields
View SamplesAPC is a key regulator of canonical Wnt signalling since it participates to beta-catenin targeting to proteasomal degradation when the pathway is inactive. Moreover, independently of Wnt signaling, APC regulates several cellular functions such as mycrotubule dynamics, chromosome segregation, cell adhesion. Although APC has been widely studied for its implication in initation and progression of several cancers, its role in satellite cells (skeletal muscle stem cells) has never been investigated.
APC is required for muscle stem cell proliferation and skeletal muscle tissue repair.
Specimen part
View SamplesGlobal expression analysis of neural crest-like skin-derived precursors (SKPs) and Sox2-positive follicle dermal cells that SKPs originate from.
SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells.
Specimen part
View SamplesThe MYB gene family encodes transcription factors with a diverse range of functions in Arabidopsis. This study demonstrated that MYB5, which is expressed in trichomes and seeds, plays a central role in trichome and seed development. A microarray analysis of myb5 seeds identified other members of the MYB5 regulatory network.
The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis.
No sample metadata fields
View SamplesNonsense-mediated RNA decay (NMD) is regulated by a variety of cellular stresses. We expose U2OS cells to several stresses and assess RNA expression in the absence of transcription (i.e. stability). These studies identify transcripts that are stabilized by the physiological inhibition of NMD.
Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis.
Specimen part, Cell line, Treatment, Time
View Samples