TGFBR1*6A is a common hypomorphic variant of the type 1 Transforming Growth Factor Beta Receptor (TGFBR1), which has been associated with increased cancer risk in some studies. Although TGFBR1*6A is capable of switching TGF- growth inhibitory signals into growth stimulatory signals when stably transfected into MCF-7 breast cancer cells, TGFBR1*6A biological effects are largely unknown. To broadly explore TGFBR1*6A potential oncogenic properties, we assessed its impact on the migration and invasion of MCF-7 cells. We found that TGFBR1*6A significantly enhances MCF-7 cell migration and invasion in a TGF- signaling independent manner. We set up and performed a gene array using the conditions mimicking the cell migration experiments to determine which genes in the migratory pathway were differentially regulated between the MCF-7*6A cells and the MCF-7*9A (wild type transfected) cells. The gene array identified two downregulated genes in *6A compared to *9A that are involved in cell migration and invasion: ARHGAP5, encoding ARHGAP5, and FN1, encoding fibronectin-1 (FN1). We were subsequently able to use this information in further studies in the lab.
TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation.
No sample metadata fields
View SamplesThe intestinal epithelium constitutes a crucial defense to the potentially life-threatening effects of gut microbiota. However, due to a complex underlying vasculature, hypoperfusion and resultant tissue ischemia pose a particular risk to function and integrity of the epithelium. The small ubiquitin-like modifier (SUMO) conjugation pathway critically regulates adaptive responses to metabolic stress and is of particular significance in the gut, as inducible knockout of the SUMO-conjugating enzyme Ubc9 results in rapid intestinal epithelial disintegration. Here we analyzed the pattern of individual SUMO isoforms in intestinal epithelium and investigated their roles in intestinal ischemia/reperfusion (I/R) damage. Immunostaining revealed that epithelial SUMO2/3 expression was almost exclusively limited to crypt epithelial nuclei in unchallenged mice. However, intestinal I/R or overexpression of Ubc9 caused a remarkable enhancement of epithelial SUMO2/3 staining along the crypt-villus axis. Unexpectedly, a similar pattern was found in SUMO1 knockout mice. Ubc9 transgenic mice, but also SUMO1 knockout mice were protected from I/R injury as evidenced by better preserved barrier function and blunted inflammatory responses. PCR array analysis of microdissected villus-tip epithelia revealed a specific epithelial contribution to reduced inflammatory responses in Ubc9 transgenic mice, as key chemotactic signaling molecules such as IL17A were significantly downregulated. Together, our data indicate a critical role particularly of the SUMO2/3 isoforms in modulating responses to I/R and provide the first evidence that SUMO1 deletion activates a compensatory process that protects from ischemic damage.
Ubc9 overexpression and SUMO1 deficiency blunt inflammation after intestinal ischemia/reperfusion.
Treatment
View SamplesEfficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to impaired expression of IFN--inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that repeated short-term co-cultures of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-1 (26-35)-specific CTL led to the generation of clones resistant to CTL-mediated cell death. To determine which of the UPS components and its associated pathways was responsible for CTL escape; three UKRV-Mel-15a clones were subjected to microarray gene expression analysis.
Exposure to Melan-A/MART-126-35 tumor epitope specific CD8(+)T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS).
Specimen part
View SamplesIdentification of genetic/cytogenetic alterations and differentially expressed cellular genes in HPV16 E6, E7 and E6/E7 positive human foreskin keratinocytes
Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.
No sample metadata fields
View SamplesIdentification of genes differentially expressed in tumorigenic compared to non-tumorigenic, HPV18 positive cells
Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.
No sample metadata fields
View SamplesAbstract Background. The cellular effects of androgen are transduced through the androgen receptor, which controls the expression of genes that regulate biosynthetic processes, cell growth, and metabolism. Androgen signaling also impacts DNA damage signaling through mechanisms involving gene expression and transcription-associated DNA damaging events. Defining the contributions of androgen signaling to DNA repair is important for understanding androgen receptor function, and it also has important translational implications. Methods. We generated RNA-seq data from multiple prostate cancer lines and used bioinformatic analyses to characterize androgen-regulated gene expression. We compared the results from cell lines with gene expression data from prostate cancer xenografts, and patient samples, to query how androgen signaling and prostate cancer progression influences the expression of DNA repair genes. We performed whole genome sequencing to help characterize the status of the DNA repair machinery in widely used prostate cancer lines. Finally, we tested a DNA repair enzyme inhibitor for effects on androgen-dependent transcription. Results. Our data indicates that androgen signaling regulates a subset of DNA repair genes that are largely specific to the respective model system and disease state. We identified deleterious mutations in the DNA repair genes RAD50 and CHEK2. We found that inhibition of the DNA repair enzyme MRE11 with the small molecule mirin inhibits androgen-dependent transcription and growth of prostate cancer cells. Conclusions. Our data supports the view that crosstalk between androgen signaling and DNA repair occurs at multiple levels, and that DNA repair enzymes in addition to PARPs, could be actionable targets in prostate cancer. Overall design: RNA was extracted from PC3-AR, VCaP, and LNCaP cells under untreated and androgen (2 nM, R1881) treated conditions. A total of 21 samples were sequenced with 3 replicates for each condition.
Genomic analysis of DNA repair genes and androgen signaling in prostate cancer.
Cell line, Subject
View SamplesOne of the key questions in developmental biology is how from universally shared molecular mechanisms and pathways, is it possible to generate organs displaying similar or complementary functions, with a wide range of different shapes or tissue organization? The dentition represents a valuable system to address the issues of differential molecular signatures generating specific tooth types. We performed a comparative transcriptomic analysis of developing murine lower incisors, mandibular molars and maxillary molars at the developmental cap stage (E14.5) prior to recognizable tooth shape and cusp pattern.
Molars and incisors: show your microarray IDs.
Specimen part
View SamplesWe report data obtaibed from high-throughput sequencing of small RNAs in 20 samples of follicular thyroid tumors. We analyzed a total of 4.7±1.5million reads per sample with 3 different pipelines. The main goal was to evaluate the usefulness of next generation sequencing in small RNA profiling and the concordance of its results with microarrays and qPCR. Additionally we verified published follicular thyroid tumor biomarkers in the set of our samples. Overall design: Small RNA expression profiling with High Throughput Sequencing of 20 thyroid tumor samples, performed on an Illumina HiScan-SQ.
Analysis options for high-throughput sequencing in miRNA expression profiling.
Subject
View SamplesDespite Hedgehogs influence on T-cell activation and proliferation, the transcriptional targets of Gli2 in lymphocytes are not known. We therefore examined the Hedgehog-dependent transcriptional response of resting and early-stage activated T-cells in order to define their transcriptional response to Hedgehog pathway activation.
Tissue-derived hedgehog proteins modulate Th differentiation and disease.
Specimen part, Treatment
View SamplesRetinoic acid (RA), an active derivative of the liposoluble vitamin A (retinol), acts as an important signaling molecule during embryonic development, regulating phenomenons as diverse as anterior-posterior axial patterning, forebrain and optic vesicle development, specification of hindbrain rhombomeres, pharyngeal arches and second heart field, somitogenesis, and differentiation of spinal cord neurons. This small molecule directly triggers gene activation by binding to nuclear receptors (RARs), switching them from potential repressors to transcriptional activators. The repertoire of RA-regulated genes in embryonic tissues is poorly characterized. We performed a comparative analysis of the transcriptomes of murine wild-type and Retinaldehyde Dehydrogenase 2 null-mutant (Raldh2-/-) embryos - unable to synthesize RA from maternally-derived retinol - using Affymetrix DNA microarrays. Transcriptomic changes were analyzed in two embryonic regions: anterior tissues including forebrain and optic vesicle, and posterior (trunk) tissues, at early stages preceding the appearance of overt phenotypic abnormalities. Several genes expected to be downregulated under RA deficiency appeared in the transcriptome data (e.g. Emx2, Foxg1 anteriorly, Cdx1, Hoxa1, Rarb posteriorly), whereas reverse-transcriptase-PCR and in situ hybridization performed for additional selected genes validated the changes identified through microarray analysis. Altogether, the affected genes belonged to numerous molecular pathways and cellular/organismal functions, demonstrating the pleiotropic nature of RA-dependent events. In both tissue samples, genes upregulated were more numerous than those downregulated, probably due to feedback regulatory loops. Bioinformatic clustering analysis allowed us to extract groups of genes displaying similar behaviors in mutant tissue samples. These data give an overview of the gene expression changes occurring under a state of embryonic RA deficiency, and provide new candidate genes and pathways for a better understanding of retinoid-dependent molecular events.
Transcriptomic analysis of murine embryos lacking endogenous retinoic acid signaling.
Specimen part
View Samples