Affymetrix Human Genome U133A platform was used to obtain gene expression profiles of 28 pathologically and clinically well characterized adenocarcinomas of the lung. In addition, EGFR status was determined by fluorescent in situ hybridization and immunohistochemistry.
Gene expression profiles of lung adenocarcinoma linked to histopathological grading and survival but not to EGF-R status: a microarray study.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Autophagy maintains the metabolism and function of young and old stem cells.
Specimen part
View SamplesAutophagy is critical for protecting HSCs from metabolic stress. Here, we used a genetic approach to inactivate autophagy in adult HSCs by deleting the Atg12 gene. We show that loss of autophagy causes accumulation of mitochondria and an oxidative phosphorylation (OXPHOS)-activated metabolic state, which drives accelerated myeloid differentiation likely through epigenetic deregulations rather than transcriptional changes, and impairs HSC self-renewal activity and regenerative potential.
Autophagy maintains the metabolism and function of young and old stem cells.
Specimen part
View SamplesTo identify the molecular characterisitics of parallel lineage-biased MPP populations arising from hematopoietic stem cells (HSC) we conducted genome-wide analyses of hematopoietic stem, progenitor and mature myeloid cell populations using Affymetrix Gene ST1.0 arrays.
Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions.
Specimen part
View SamplesMultipotent stromal cells (MSC) and their osteoblastic lineage cell (OBC) derivatives are part of the bone marrow (BM) niche and contribute to hematopoietic stem cell (HSC) maintenance. During myeloproliferative neoplasm (MPN) development, MSCs are stimulated to overproduce functtionally altered OBCs, which accumulate in the BM cavity as myelofibrotic cells. These MPN-expanded OBCs, in turn, impair the maintenance of normal HSCs but not of leukemic stem cells.
Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche.
Specimen part, Time
View SamplesLoss of Rb family in HSCs results in a severe phenotype, such as enhanced proliferation and increase in stem cell number. In addition, HSCs were higly mobilized but failed to transplant. Rb family deficient mice rapidly exhibit a myeloproliferative disease with eosinophilic characteristics. Meanwhile, the lymphoid compartment was severely decreased, due to high apoptotic activity in this lineage.
Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family.
No sample metadata fields
View SamplesThe key lipid metabolism transcription factor sterol regulatory element-binding protein (SREBP)-1a integrates gene regulatory effects of hormones, cytokines, nutrition and metabolites as lipids, glucose or cholesterol via stimuli specific phosphorylation by different MAPK cascades. We have formerly reported the systemic impact of phosphorylation in transgenic mouse models with liver-specific overexpression of the N-terminal transcriptional active domain of SREBP-1a (alb-SREBP-1a) or a MAPK kinase phosphorylation sites deficient variant (alb-SREBP-1aP; (S63A, S117A, T426V)), respectively. Here we investigated the molecular basis of the systemic observation in holistic hepatic gene expression analyses and lipid degrading organelles involved in the pathogenesis of metabolic syndrome, i.e. peroxisomes, by 2D-DIGE and mass spectrometry analyses. Although alb-SREBP-1a mice develop a severe phenotype with visceral adipositas and hepatic lipid accumulation featuring a fatty liver, the hepatic differential gene expression and alterations in peroxisomal protein patterns compared to control mice were surprisingly relative low. In contrast, phosphorylation site deficient alb-SREBP-1aP mice, protected from hepatic lipid accumulation phenotype, showed gross alteration in hepatic gene expression and peroxisomal proteome. Further knowledge based analyzes revealed that overexpression of SREBP-1a favored mainly acceleration in lipid metabolism and indicated a regular insulin signaling, whereas disruption of SREBP-1a phosphorylation resulted in massive alteration of cellular processes including signs for loss of lipid metabolic targets. These results could be the link to a disturbed lipid metabolism that overall resembles a state of insulin resistance.
Inactivation of SREBP-1a Phosphorylation Prevents Fatty Liver Disease in Mice: Identification of Related Signaling Pathways by Gene Expression Profiles in Liver and Proteomes of Peroxisomes.
Sex, Age, Specimen part
View SamplesmRNA expression data were collected from patients with brain tumor to improve diagnostic of gliomas on molecular level.
Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain.
No sample metadata fields
View SamplesTesticular and ovarian gene expression changes with loss of DMXL2
Dual role of DMXL2 in olfactory information transmission and the first wave of spermatogenesis.
Specimen part
View SamplesEpigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion between pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem and progenitor cells (HSPCs), and mature hematopoietic cells. Quantification of chromatin composition by high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSPCs, with a further reduction in euchromatin as HSPCs transition into mature cells. Increased cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9a resulted in delayed hematopoietic stem cell (HSC) differentiation. Our results demonstrate significant global rearrangements of chromatin structure during embryonic and adult stem cell differentiation, and that heterochromatin formation by H3K9 methylation is an important regulator of HSC differentiation. Overall design: Examination of gene expression profile of in vitro cultured mouse HSC with the G9a inhibitor UNC0638
Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells.
Specimen part, Cell line, Treatment, Subject
View Samples