The childhood brain tumour medulloblastoma includes four subtypes with very different prognoses. Here, we show that paracrine signals driven by mutant Beta-Catenin in WNT-medulloblastoma an essentially curable form of the disease induce an aberrant fenestrated vasculature that permits the accumulation of high levels of intra-tumoural chemotherapy and a robust therapeutic response. In contrast, SHH-medulloblastoma a less curable disease subtype contains an intact blood brain barrier, rendering this tumour impermeable and resistant to chemotherapy. Remarkably, the medulloblastoma-endothelial cell paracrine axis can be manipulated in vivo, altering chemotherapy permeability and clinical response. Thus, medulloblastoma genotype dictates tumour vessel phenotype, explaining in part the disparate prognoses among medulloblastoma subtypes and suggesting an approach to enhance the chemoresponsiveness of other brain tumours.
Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype.
Specimen part
View SamplesWhole-genome sequencing recently identified recurrent missense mutations in the RNA helicase DDX3X in pediatric medulloblastoma (MB) and other tumors. The normal function of DDX3X is poorly understood, and the consequences of its cancer-associated mutations have not been explored. Here we used genomic, biochemical, cell biological, and animal modeling approaches to investigate normal DDX3X function and the impact of cancer-associated DDX3X mutations. Cross-linking immunoprecipitation–high-throughput sequencing (CLIPseq) analyses revealed that DDX3X binds primarily to ~1000 mature mRNA targets at binding sites spanning the full mRNA length; their enrichment in the coding regions suggests that DDX3X plays a role in translational elongation. The association of wild-type DDX3X with polysomes is consistent with this observation. Cancer-associated mutations result in loss of DDX3X from polysomes and accumulation of mutant DDX3X in stress granules (cytoplasmic accumulations of translationally arrested mRNAs). Mutation-dependent redistribution of DDX3X to stress granules is also observed in a Drosophila model system and in MB tumor cells from patients carrying DDX3X mutations. Importantly, mRNAs targeted by DDX3X are enriched in translation factors, suggesting that DDX3X regulates translation both directly and indirectly. Indeed, depletion of DDX3X by RNAi or over-expression of mutant DDX3X significantly impairs global protein synthesis. Ribosome profiling confirmed this observation and showed a 5’ bias in ribosomal occupancy, further confirming the role of DDX3X in translational elongation. Together, our data show that DDX3X is a key regulator of translation and that this function is impaired by cancer-associated mutations. Finally, we found that medulloblastoma-related mutant DDX3X can efficiently bind the wild-type form suggesting that mutant DDX3X could exert a dominant negative effect in vivo. Overall design: Examination of the whole tarnscriptome under conditions of DDX3X knockdown or overexpression of WT DDX3X or cancer-associated DDX3X mutants
Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation.
No sample metadata fields
View SamplesConditional deletion of Geminin from the entire hematopoietic compartment using Vav1:iCre mice led to defective hematopoiesis/dyserythropoiesis in E15.5 mouse embryos.
Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors.
Specimen part
View SamplesMiR-1246 was found to promote tumorigenesis and metastasis in sevearl cancer types. In the context of tumor microenvironment, tumor-associated macrophages are a central part typically correlated with poor prognosis.
Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246.
Specimen part
View SamplesPrimary culture airway epithelial cells, grown under physiologic air-liquid interface conditions, with, or without IL-13 in order to study the effects of this cytokine on mucous cell metaplasia, an important feature of asthma and COPD.
IL-13-induced airway mucus production is attenuated by MAPK13 inhibition.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification and Functional Validation of Reciprocal microRNA-mRNA Pairings in African American Prostate Cancer Disparities.
Specimen part
View SamplesProstate cancer (PCa) tends to be more aggressive and lethal in African Americans (AA) compared to European Americans (EA). To further understand the biological factors accounting for the PCa disparities observed in AA and EA patients, we performed gene profiling using Affymetrix human exon 1.0 ST arrays to identify the differentially expressed genes beween AA cancer and patient matched normal tissues.
Identification and Functional Validation of Reciprocal microRNA-mRNA Pairings in African American Prostate Cancer Disparities.
Specimen part
View SamplesProstate cancer (PCa) tends to be more aggressive and lethal in African Americans (AA) compared to European Americans (EA). To further understand the biological factors accounting for the PCa disparities observed in AA and EA patients, we performed gene profiling analysis using Affymetrix human exon 1.0 ST arrays to identify the differentially expressed genes in AA and EA patients.
Identification and Functional Validation of Reciprocal microRNA-mRNA Pairings in African American Prostate Cancer Disparities.
Specimen part
View SamplesProstate cancer (PCa) tends to be more aggressive and lethal in African Americans (AA) compared to European Americans (EA). To further understand the biological factors accounting for the PCa disparities observed in AA and EA patients, we performed gene profiling analysis using Affymetrix human exon 1.0 ST arrays to identify the differentially expressed genes in EA PCa vs. EA normal.
Identification and Functional Validation of Reciprocal microRNA-mRNA Pairings in African American Prostate Cancer Disparities.
Specimen part
View SamplesOur studies provide direct evidence that O-glycosylation pathways play a role in the regulation of cell growth through apoptosis and proliferation pathways. Eight small molecular weight analogues of the GalNAc-alpha-1-O-serine/threonine structure based on 1-benzyl-2-acetamido-2- deoxy-alpha-O-D-galactopyranoside have been synthesised and tested in 5 human colorectal cancer cell lines. Three inhibitors, 1-benzyl-2-acetamido-2-deoxy-alpha-O-D-galactopyranoside and the corresponding 2-azido- and C-glycoside analogues, were screened in two colorectal cancer cell lines at 0.5mM and showed induction of apoptosis. Proliferation was down regulated in the same two cell lines with all three inhibitors, as detected by Ki67 staining and gene array. Treatment both cell lines with inhibitors led to changes in glycosylation detected with peanut lectin. The competitive action of the inhibitors resulted in the intracellular formation of 28 aryl-glycan products which were identified by MALDI and electrospray mass spectroscopy. The structures found map onto known O-glycosylation biosynthetic pathways and showed a differential pattern for each of the inhibitors in both cell lines. Gene array analysis of the glycogenes illustrated a pattern of glycosytransferases that matched the glycan structures found in glycoproteins and aryl-glycans formed in the PC/AA/C1/SB10C cells, however there was no action of the three inhibitors on glycogene transcript levels. The inhibitors act at both intermediary metabolic and genomic levels, resulting in altered protein glycosylation and arylglycan formation. These events may play a part in growth arrest.
O-glycan inhibitors generate aryl-glycans, induce apoptosis and lead to growth inhibition in colorectal cancer cell lines.
No sample metadata fields
View Samples