Purpose: More than 90% of children with diffuse intrinsic pontine glioma (DIPG) die within 2 years of diagnosis. There is a dire need to identify therapeutic targets, however lack of patient material for research has limited progress. We evaluated a large cohort of diffuse intrinsic pontine gliomas (DIPGs) to identify recurrent genomic abnormalities and gene expression signatures underlying DIPG.
Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma.
Age, Specimen part, Disease
View SamplesPurpose: To define copy number alterations and gene expression signatures underlying pediatric high-grade glioma (HGG). Patients and Methods: We conducted a high-resolution analysis of genomic imbalances in 78 de novo pediatric HGG, including 7 diffuse intrinsic pontine gliomas, and 10 HGG cases arising in children who received cranial irradiation for a previous cancer, using Affymetrix 500K GeneChips. Gene expression signatures for 53 tumors were analyzed with Affymetrix U133v2 arrays. Results were compared with publicly available data from adult tumors. Results: Pediatric and adult glioblastoma were clearly distinguished by frequent gain of chromosome 1q (30% vs 9%) and lower frequency of chromosome 7 gain (13% vs 74%), respectively. The most common focal amplifications also differed, with PDGFRA and EGFR predominant in childhood and adult populations respectively. These common alterations in pediatric HGG were detected at higher frequency in irradiation-induced tumors, suggesting that these are initiating events in childhood gliomagenesis. CDKN2A was the most common tumor suppressor gene targeted by homozygous deletion in pediatric HGG. No IDH1 hotspot mutations were found in pediatric tumors, highlighting molecular differences in pathogenesis between childhood HGG and adult secondary glioblastoma. Integrated copy number and gene expression data indicated that deregulated PDGFRA signaling plays a major role in pediatric HGG. Conclusions: Integrated molecular profiling showed substantial differences in the molecular features underlying pediatric and adult HGG, indicating that findings in adult tumors cannot be simply extrapolated to younger patients. PDGFRA may be a useful target for pediatric HGG including diffuse pontine gliomas.
Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease.
Age, Disease
View SamplesMale fertility and testis function changes with age and so it was sought to determine if these changes are accompanied by changes in gene expression.
Aging results in differential regulation of DNA repair pathways in pachytene spermatocytes in the Brown Norway rat.
Specimen part
View SamplesThe root apex is an important section of the plant root, involved in environmental sensing and cellular development. Analyzing the gene profile of root apex in diverse environments is important and challenging, especially when the samples are limiting and precious, such as in spaceflight. The feasibility of using tiny root sections for transcriptome analysis was examined in this study.To understand the gene expression profiles of the root apex, Arabidopsis thaliana Col-0 roots were sectioned into Zone-I (0.5 mm, root cap and meristematic zone) and Zone-II (1.5 mm, transition, elongation and growth terminating zone). Gene expression was analyzed using microarray and RNA seq.Both the techniques, arrays and RNA-Seq identified 4180 common genes as differentially expressed (with > two-fold changes) between the zones. In addition, 771 unique genes and 19 novel TARs were identified by RNA-Seq as differentially expressed which were not detected in the arrays. Single root tip zones can be used for full transcriptome analysis; further, the root apex zones are functionally very distinct from each other. RNA-Seq provided novel information about the transcripts compared to the arrays. These data will help optimize transcriptome techniques for dealing with small, rare samples. Overall design: Arabidopsis thaliana var. Columbia (COL-0) seedlings were grown on sterile solid media plates containing 0.5 % phytagel. The plates were vertically placed in growth chambers with continuous light (80-100 µmol m -2) at a constant temperature of 19° C. Eight day old seedlings were harvested into RNA-later solution in a 50 mL centrifuge tubes and stored at -20 °C freezer. The root tips were dissected into zone-I: 0.5mm from the tip including the root cap and root division zones, and zone-II: 1.5mm sections including root elongation and root hair zone. Microarray and sequencing experiments were performed.
Comparing RNA-Seq and microarray gene expression data in two zones of the <i>Arabidopsis</i> root apex relevant to spaceflight.
Age, Specimen part, Subject
View SamplesStressors may have negative or positive effects in dependence of the dose (hormesis). We studied this phenomenon in Caenorhabditis elegans by applying weak or severe abiotic (cadmium, CdCl2) and/or biotic stress (different bacterial diets) during cultivation/breeding of the worms, and determining developmental speed or survival rates and performing transcriptome profiling and RT-qPCR analyses to explore the genetic basis of the detected phenotypic differences. This study showed that a bacterial diet resulting in higher levels of energy resources in the worms (E. coli OP50 feeding) or weak abiotic and biotic stress especially promote the resistance against severe abiotic or biotic stress and the age-specific survival rate of WT. Overall design: Five experimental conditions; mostly three replicates per experimental condition; four contrasts between test and control conditions functionally analyzed.
Bacterial diet and weak cadmium stress affect the survivability of <i>Caenorhabditis elegans</i> and its resistance to severe stress.
Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparing RNA-Seq and microarray gene expression data in two zones of the <i>Arabidopsis</i> root apex relevant to spaceflight.
Age, Specimen part
View SamplesThe root apex is an important section of the plant root, involved in environmental sensing and cellular development. Analyzing the gene profile of root apex in diverse environments is important and challenging, especially when the samples are limiting and precious, such as in spaceflight. The feasibility of using tiny root sections for transcriptome analysis was examined in this study.To understand the gene expression profiles of the root apex, Arabidopsis thaliana Col-0 roots were sectioned into Zone-I (0.5 mm, root cap and meristematic zone) and Zone-II (1.5 mm, transition, elongation and growth terminating zone). Gene expression was analyzed using microarray and RNA seq.Both the techniques, arrays and RNA-Seq identified 4180 common genes as differentially expressed (with > two-fold changes) between the zones. In addition, 771 unique genes and 19 novel TARs were identified by RNA-Seq as differentially expressed which were not detected in the arrays.
Comparing RNA-Seq and microarray gene expression data in two zones of the <i>Arabidopsis</i> root apex relevant to spaceflight.
Age, Specimen part
View SamplesSpc1/ Spc1K49R was overexpressed in wt S. pombe cells for 24 hours and gene expression changes were analysed
Genome wide transcription profiling of the effects of overexpression of Spc1 and its kinase dead mutant in Schizosaccharomyces pombe.
No sample metadata fields
View SamplesThe assembly of neural circuits involves multiple sequential steps such as the specification of cell types, their migration to proper brain locations, morphological and physiological differentiation, and the formation and maturation of synaptic connections. This intricate and often prolonged process is guided by elaborate genetic mechanisms that regulate each developmental event. Evidence from numerous systems suggests that each cell type, once specified, is endowed with a genetic program that directs its subsequent development. This cell intrinsic program unfolds in respond to, and is regulated by, extrinsic signals, including cell-cell and synaptic interactions. To a large extent, the execution of this genetic program is achieved by the expression of specific sets of genes that support distinct developmental processes. Therefore, a comprehensive analysis of the developmental progression of gene expression in synaptic partners of neurons may provide a basis for exploring the genetic mechanisms regulating circuit assembly.
Developmental Coordination of Gene Expression between Synaptic Partners During GABAergic Circuit Assembly in Cerebellar Cortex.
Sex, Specimen part
View SamplesArabidopsis thaliana was evaluated for its response to the spaceflight environment in three replicated experiments on the International Space Station. Two approaches were used; GFP reporter genes were used to collect gene expression data in real time within unique GFP imaging hardware, and plants were harvested on orbit to RNAlater for subsequent analyses of gene expression with using Affymetrix and SAGE transcriptome analyses. Three tissue types were examined (leaves, hypocotyls and roots) and compared to analyses conducted with whole plants. Transcriptome analyses with whole plants suggested that the spaceflight environment had little impact on the transcriptome of arabidopsis, however, closer examination of selected tissues revealed that there are a number of tissue-specific responses that arabidopsis employs to respond to this novel environment
Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight.
Age, Specimen part
View Samples