This SuperSeries is composed of the SubSeries listed below.
Differential gene expression and clonal selection during cellular transformation induced by adhesion deprivation.
Specimen part, Cell line
View SamplesCell substrate adhesion plays an important role in cellular transformation of rat fibroblast cell lines, however a few viable non-adherent fibroblast cells when placed in suspension for a time period of 16 h (NA16) showed varied phenotypic characteristics like colony and tumor formation
Differential gene expression and clonal selection during cellular transformation induced by adhesion deprivation.
Specimen part, Cell line
View SamplesCell substrate adhesion plays an important role in cellular transformation of rat fibroblast cell lines, however a few viable non-adherent fibroblast cells when placed in suspension for a time period of 16 h (NA16) showed varied phenotypic characteristics like colony and tumor formation
Differential gene expression and clonal selection during cellular transformation induced by adhesion deprivation.
Specimen part, Cell line
View SamplesCell substrate adhesion plays an important role in cellular transformation of rat fibroblast cell lines, however a few viable non-adherent fibroblast cells when placed in suspension for a time period of 16 h (NA16) showed varied phenotypic characteristics like colony and tumor formation
Differential gene expression and clonal selection during cellular transformation induced by adhesion deprivation.
Specimen part, Cell line
View SamplesWe used a high-throughput technology, DNA microarray, to screen the entire genome for the changes in gene expression in diseased tissue to characterize Dupuytren's contracture at a molecular level and find genes that are involved in development of the disease.
Microarray analysis of Dupuytren's disease cells: the profibrogenic role of the TGF-β inducible p38 MAPK pathway.
Sex, Specimen part
View Samples63 melanoma cell lines hybridized to Affymetrix Hu133_Plus 2 oligo arrays. The aim of this study was to identify potential downstream targets of key oncogenes and TSGs in melanoma (including p14ARF, p16INK4A, BRAF etc).
Confirmation of a BRAF mutation-associated gene expression signature in melanoma.
No sample metadata fields
View SamplesDiabetic embryopathy can affect any developing organ system, although cardiovascular malformations, neural tube defects and caudal dysgenesis syndrome are the most prominent congenital malformations. We hypothesize that the metabolic imbalance occurring in diabetic pregnancy de-regulates tissue specific gene expression programs in the developing embryo. In order to identify genes whose expression is affected by maternal diabetes, we analyzed gene expression profiles of diabetes-exposed mouse embryos by using Affymetrix microarrays. We identified 129 genes with altered expression levels; 21 genes had increased and 108 genes had decreased expression levels in diabetes-exposed embryos relative to controls. A substantial fraction of these genes (35) are essential for normal embryonic development as shown by functional studies in mouse models. The largest fraction of diabetes-affected genes was in transcription factor and DNA-binding/chromatin remodeling functional categories (19%), which directly affect transcription. These findings suggest that transcriptional regulation in the developing embryos is perturbed by maternal diabetes and that transcriptional regulation plays a major role in the responses of embryos to intrauterine exposure to diabetic conditions. Interestingly, we found the expression of hypoxia-inducible factor 1 (Hif1) deregulated in the embryos exposed to the conditions of maternal diabetes. Since hypoxic stress is associated with the complications of diabetic pregnancy, we performed a post-hoc analysis of our microarray data with a specific focus on known HIF1 target genes. Of 39 genes detected in our microarrays, the expression changes of 22 genes (20 were increased and two genes were decreased in diabetes-exposed embryos) were statistically significant. These results indicate that HIF1-regulated pathways are affected in diabetes-exposed embryos. These results strongly suggest that de-regulation of hypoxia/HIF1 activated pathways could be the one of the key molecular events associated with the exposure to the teratogenic intrauterine environment of a diabetic mother.
Maternal diabetes alters transcriptional programs in the developing embryo.
Specimen part
View SamplesExposure to maternal diabetes during pregnancy alters transcriptional profiles in the developing embryo. The enrichment, within the set of de-regulated genes, of those encoding transcriptional regulatory molecules provides support for the hypothesis that maternal diabetes affects specific developmental programs.
Maternal diabetes alters transcriptional programs in the developing embryo.
Specimen part, Disease, Disease stage
View SamplesAlthough recent evidence suggests that overlapping sense/antisense transcription is a common feature in higher eukaryotes, the possibility that overlapping transcripts could interact to each other and bear a specific biological function has not been explored. Here we show that a plethora of sense/antisense transcript pairs are co-expressed from 8q24.21 within the same cell and acquire a stable double-stranded RNA conformation. Interestingly, these molecules display predominantly nuclear localization and establish specific interactions with nuclear components. A detailed characterization of a particular sense/antisense pair (ndsRNA-2a) revealed that this molecule displays differential localization throughout the cell cycle, interacts with RCC1 and RAN and through the latter with the mitotic RANGAP1-SUMO1/RANBP2 complex. Notably, an increased number of bi/multi-nucleated cells and chromatin bridges were observed upon ndsRNA-2a overexpression, whereas strand-specific ndsRNA-2a knockdown leads to mitotic catastrophe and cell death. This suggests a functional role of ndsRNA-2a in cell cycle progression that critically requires its double stranded nature. Finally, the identification of hundreds of sense/antisense transcripts pairs harboring ndsRNA profile signatures and their regulation by cellular cues suggests that ndsRNAs constitute a novel class of regulatory molecules that are likely to be involved in a plethora of biological processes. Overall design: PLB985 long (3x datasets) and small (3x datasets) strand specific RNA-Seq for captured RNAs. Global PLB985 for long (2x datasets) and small RNAs (2x datasets). Global libraries for EtOH (vehicle) treated (1x dataset) or retinoic acid induced differentiated PLB985 cells (1x dataset).
Human cells contain natural double-stranded RNAs with potential regulatory functions.
No sample metadata fields
View SamplesWe investigated an acute kidney injury (AKI) model in rats induced by cisplatin (Cp) administration. The cisplatin is widely used since its biochemical and histopathological characteristics are representative of drug-induced AKI in humans. Male Wistar rats were dosed once ip with 0, 1 and 3 mg/kg cisplatin. Tubular necorsis was observed histopathologically in all treated rats and war recovery on day 26. Gene expression profiling of the kidney cortex with microarrays 3, 5, 8, and 26 days after single administration of 3mg/kg Cp revealed a major profile pattern characterized by maximally increased and decreased mRNA levels on day 8, with clear changes already found 3 days after treatment for about half of the mRNAs. The mRNA expression pattern after administration of 1mg/kg Cp was overall similar, yet with a dose-dependent smaller fold-change. In summary we found 274 mRNAs showing significantly altered levels in the kidney of which 162 were increased and 112 decreased, respectively. Functional interpretation of the proteins encoded by these mRNAs revealed induction of a DNA damage response likely caused by the known molecular activity of Cp as DNA alkylating agent. Increased mRNAs associated with apoptosis (encoded by the corresponding genes like B-cell lymphoma 3-encoded protein, Bcl3; mouse double minute 2 homolog, Mdm2; p21/WAF1 also known as cyclin-dependent kinase inhibitor 1), cell cycle regulation (encoded by the corresponding genes like Cyclin-G1, Ccng1; B-cell translocation gene 2, Btg2) and stress response may have partly been induced by the DNA damage, but also by the kidney damage associated with Cp administration. Increased levels of mRNAs indicating regeneration (encoded by the corresponding genes like SPARC- related modular calcium-binding protein 2, Smoc2; Tenascin C, Tnc) and decreased levels of mRNAs coding for proteins related to kidney function, indicating dedifferentiation, are likely related to the observed kidney injury.
Comparison of the MesoScale Discovery and Luminex multiplex platforms for measurement of urinary biomarkers in a cisplatin rat kidney injury model.
Sex, Specimen part
View Samples