Bitter taste receptors (T2Rs) are typical G-protein coupled receptors expressed in various tissue where they are involved in the regulation of physiological processes, thus suggesting a wider function in sensing microenvironment. We analyzed their expression and role in acute myeloid leukemia (AML). AML cells express functional T2Rs and their stimulation with the agonist, denatonium benzoate, substantially modified the AML cell transcriptomic profile and functions. GEP analysis identified relevant cellular processes affected by denatonium treatment in AML, including cell cycle, survival, migration and metabolism. More precisely, T2R activation reduced proliferation by inducing cell cycle arrest in G0/G1 phase or induced apoptosis via caspase cascade activation; impaired AML cell motility and migratory capacity; inhibited cellular respiration by decreasing glucose uptake and oxidative phosphorylation.
Denatonium as a Bitter Taste Receptor Agonist Modifies Transcriptomic Profile and Functions of Acute Myeloid Leukemia Cells.
Specimen part, Cell line, Treatment
View SampleshCLE/C14orf166/RTRAF, DDX1 and HSPC117 are components of cytoplasmic mRNA-transporting granules kinesin-associated in dendrites. They have also been found in cytoplasmic ribosome-containing RNA granules that transport specific mRNAs halted for translation until specific neuronal signals renders them accessible to the translation machinery. hCLE associates to DDX1, HSPC117 and FAM98B in HEK293T cells and all four proteins bind to cap analog-containing resins. Competition and elution experiments indicate that binding of hCLE complex to cap resins is independent of eIF4E; the cap-binding factor needed for translation. Purified hCLE free of its associated proteins binds cap with low affinity suggesting that its interacting proteins modulate its cap association. hCLE silencing reduces hCLE accumulation and that of its interacting proteins and decreases mRNA translation. hCLE-associated RNAs have been isolated and sequenced; RNAs involved in mRNA translation are specifically associated. The data suggest a positive role of hCLE complex modulating mRNA translation. Overall design: Standard RNA-seq protocol was applied for comparing two sample types (HEK293T cells transfected with hCLE-TAP plasmid or empty TAP) with two biological replicates each. More than 20 million single-end, strand-specific 50 nt reads were generated for each sample.
hCLE/RTRAF-HSPC117-DDX1-FAM98B: A New Cap-Binding Complex That Activates mRNA Translation.
Cell line, Subject
View SamplesThe anaphylatoxin C5a is a potent mediator of innate immunity and promotes inflammation via its receptor C5aR1 upon complement system activation danger-associated molecular patterns. Both C5a and C5aR1 are thought to be contributing factors in inflammatory and infectious conditions of the bone. Bone fracture healing, for example, was significantly improved when applying a C5aR1-antagonist in a rodent model of severe systemic inflammation and osteoblasts were found to be target cells for C5a in this setting. Interestingly, osteoblasts up-regulate C5aR1 during osteogenic differentiation and after bone injury. Further, C5a induces inflammatory cytokines, such as IL-6, and the osteoclastogenic mediator RANKL in osteoblasts. However, the molecular mechanisms underlying C5a-C5aR1 signaling axis in osteoblasts remain unclear, and further targets of C5a are still elusive. Using microarray analysis, we analyzed intracellular events following C5aR1 activation in osteoblasts and defined up- or down-regulated genes and their belonging biological pathways.
C5aR1 interacts with TLR2 in osteoblasts and stimulates the osteoclast-inducing chemokine CXCL10.
Treatment
View SamplesBackground. Most colorectal cancers (CRC) arise in a progression through adenoma to carcinoma phenotypes as a consequence of altered genetic information. Clinical progression of CRC may occur in parallel with distinctive signaling alterations. We designed multidirectional analyses integrating microarray-based data with biostatistics and bioinformatics to elucidate the signaling and metabolic alterations underlying CRC development in the adenoma-carcinoma sequence. Methodology/Principal Findings. Studies were performed on normal mucosa, adenoma, and CRC samples obtained during surgery or colonoscopy. Collections of cryostat sections prepared from the tissue samples were evaluated by a pathologist to control the relative cell type content. RNA was isolated from 105 macro- and 40 microdissected specimens. The measurements were done using Affymetrix GeneChip HG-U133plus2, and probe set data were generated using two normalization algorithms: MAS5 and GCRMA with LVS. The data were evaluated using pair-wise comparisons and data decomposition into SVD modes. The method selected for the functional analysis used the Kolmogorov-Smirnov test. Based on a consensus of the results obtained by two tissue handling procedures, two normalization algorithms, and two probe set sorting criteria, we identified six KEGG signaling and metabolic pathways (cell cycle, DNA replication, p53 signaling pathway, purine metabolism, pyrimidine metabolism, and RNA polymerase) that are significantly altered in both macro- and microdissected tumor samples compared to normal colon. On the other hand, pathways altered between benign and malignant tumors were identified only in the macrodissected tissues. Conclusion/Significance. Multidirectional analyses of microarray data allow the identification of essential signaling alterations underlying CRC development. Although the proposed strategy is computationally complex and laborintensive, it may reduce the number of false results.
Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability.
Sex, Age, Specimen part
View SamplesWe performed a transcriptomic analysis of Pi starvation responses in Arabidopsis thaliana (Columbia-0) wild type plants under phosphate starvation stress and in plants with altered PHR1(-like) activity, comparing mutants of phr1 and phr1-phl1 grown in phosphate-lacking medium. Results show the central role of PHR1 and functionally redundant members of its family in the control of transcriptional responses to Pi starvation.
A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis.
Specimen part
View SamplesWe performed a transcriptomic analysis of Pi starvation responses in Arabidopsis thaliana (Columbia-0) phr1 mutant plants expressing PHR1 in presence of cicloheximide, that inhibit protein translation, thus preventing any effect of PHR1 on the expression of indirect targets. Results show the primary target genes of PHR1 in the responses to Pi starvation.
A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DNA methylation status is more reliable than gene expression at detecting cancer in prostate biopsy.
No sample metadata fields
View SamplesPanel of 53 melanoma cell lines were gene expression profiled by RNA-Seq for molecular classification Overall design: mRNA profiles of 53 melanoma cell lines
Interleukin 32 expression in human melanoma.
Disease, Disease stage, Cell line, Subject
View SamplesThe objective is to generate a robust and validated predictor profile for chemotherapy response in patients with mCRC using microarray gene expression profiles of primary colorectal cancer tissue.
Gene expression profile predictive of response to chemotherapy in metastatic colorectal cancer.
Disease, Disease stage
View SamplesObjective: the objective of this work was to determine different gene expression patterns in small bowel grafts biopsies with “minimal changes” histology that could identify patients with high rejection risk Methods: 24 samples (17 stable and 7 non stable grafts) from 8 adult patients with small bowel transplantation were included for RNA-Sequencing.Total RNA extracted from intestinal biopsies was used with the TruSeq RNA Sample Preparation v2 Kit to construct index-tagged cDNA libraries. Libraries were sequenced on the Genome Analyzer IIx following the standard RNA sequencing protocol with the TruSeq SBS Kit v5. Fastq files containing reads for each library were extracted and demultiplexed using Casava v1.8.2 pipeline. Sequencing adapter contaminations were removed from reads using Cutadapt software v1.6 and the resulting reads were aligned to the reference human genome (Ensembl gene-build GRCh37.75) using TopHat2 v2.0.13. Gene expression values were calculated as counts using HTSeq v0.6.1. Only genes with at least 1 count per million in all samples were considered for statistical analysis. Data were then normalized and differential expression tested using the R Bioconductor package edgeR. We selected all biopsies from 4 of the patients (18 biopsies, 11 stable and 7 non stable) as the discovery set. The other 6 biopsies from 4 patients (all stable) were used as the test set. Differences in the discovery set were tested by generalized linear model analysis,and results were considered significant when the Benjamini-Hochberg adjusted p-value was < 0,05. Results: We obtained 816 differentially expressed genes (DEGs) between stable and non stable biopsies in the discovery set: 369 upregulated and 447 downregulated in the non stable group. The classification and prediction with the Nearest Shrunken Centroids method identified 5 genes (ADH1C, CYP4F2, PDZK1, SLC39A4 and OPTN) from the 816 DEGs that could classify both groups with an error rate of 11% and classified correctly all samples from the test set. These results were confirmed by Supoprted Vector Machine (SVM), bagSVM and Random Forest methods, showing high accuracy, sensitivity and specificity. Conclusions: We identified 5 genes from the DEGs as possible biomarkers to classify patients with normal histology that could be however in a higher risk of rejection. In this way, gene expression assays are powerful tools with high sensitivity that allow more accurate diagnosis. Overall design: The study included 24 samples from 8 adult patients with small bowel transplantation. Samples correspond to RNA extracted from intestinal biopsies obtained at different post-transplantation time. All biopsies have an histological diagnosis of "minimal changes" and they were classified in two groups according their immunological stability (stable and non stable). Stable group comprised biopsies of patients that never rejected and biopsies obtained at least 15 days after rejection if no other rejection episode occurred in at least the next six months. Non stable group included biopsies obtained between rejection episodes (separated less than six months) and also those biopsies collected within the 15 days before the first rejection episode.
5-gene differential expression predicts stability of human intestinal allografts.
No sample metadata fields
View Samples