refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 7 of 7 results
Sort by

Filters

Technology

Platform

accession-icon GSE45025
Placing the HIRA histone chaperone complex in the chromatin landscape
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Placing the HIRA histone chaperone complex in the chromatin landscape.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45022
Expression data from Control and HIRA knockdown cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The HIRA chaperone complex, comprised of HIRA, UBN1 and CABIN1, collaborates with histone-binding protein ASF1a to incorporate histone variant H3.3 into chromatin in a DNA replication-independent manner. To better understand its function and mechanism, we integrated HIRA, UBN1, ASF1a and histone H3.3 ChIP-seq and gene expression analyses. Most HIRA-binding sites co-localize with UBN1, ASF1a and H3.3 at active promoters and active and weak/poised enhancers. At promoters, binding of HIRA/UBN1/ASF1a correlates with the level of gene expression. HIRA is required for deposition of histone H3.3 at its binding sites. There are marked differences in nucleosome and co-regulator composition at different classes of HIRA-bound regulatory site. Underscoring this, we report novel physical interactions between the HIRA complex and transcription factors, a chromatin insulator and an ATP-dependent chromatin-remodelling complex. Our results map the distribution of the HIRA chaperone across the chromatin landscape and point to different interacting partners at functionally distinct regulatory sites.

Publication Title

Placing the HIRA histone chaperone complex in the chromatin landscape.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45295
Expression data from Control, HIRA and CABIN1 knockdown cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The mammalian HIRA/UBN1/ASF1a complex is a histone chaperone complex that is conserved from yeast (Saccharomyces cerevisiae) to humans. This complex preferentially deposits the histone variant H3.3 into chromatin in a DNA replication-independent manner and is implicated in diverse chromatin regu- latory events from gene activation to heterochromatinization. In yeast, the orthologous complex consists of three Hir proteins (Hir1p, Hir2p, and Hir3p), Hpc2p, and Asf1p. Yeast Hir3p has weak homology to CABIN1, a fourth member of the human complex, suggesting that Hir3p and CABIN1 may be orthologs. Here we show that HIRA and CABIN1 interact at ectopic and endogenous levels of expression in cells, and we isolate the quaternary HIRA/UBN1/CABIN1/ASF1a (HUCA) complex, assembled from recombinant proteins. Mutational analyses support the view that HIRA acts as a scaffold to bring together UBN1, ASF1a, and CABIN1 into a quaternary complex. We show that, like HIRA, UBN1, and ASF1a, CABIN1 is involved in heterochromatinization of the genome of senescent human cells. Moreover, in proliferating cells, HIRA and CABIN1 regulate overlapping sets of genes, and these genes are enriched in the histone variant H3.3. In sum, these data demonstrate that CABIN1 is a functional member of the human HUCA complex and so is the likely ortholog of yeast Hir3p.

Publication Title

Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP034541
Expression data from PD32 and PD88 IMR90
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

IMR90 cells were passaged until replicative senescence and compared with proliferating cells. Overall design: We used RNA-Seq to detail the global programme of gene expression in human IMR90 replicative induced senescence

Publication Title

Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP033401
Expression data from ER32 and ER32.40HT IMR90
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

IMR90 cells were infected with pLNC-RAS:ER (from Jesus Gil lab) with retroviral gene transfer. Infected cells were drug selected G418. The cells were induced either with ethanol as control or with 100nM final conc 4-hydroxytamoxifen (sigma H7904) for ectopic expression of protein Overall design: We used RNA-Seq to detail the global programme of gene expression in human IMR90 oncogene induced senescence

Publication Title

Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE84453
Pure epicatechin and inflammatory gene expression profiles in circulating immune cells in (pre) hypertensive adults; a randomized double-blind, placebo-controlled, crossover trial
  • organism-icon Homo sapiens
  • sample-icon 128 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Introduction: There is increasing evidence that consumption of cocoa products have a beneficial effect on cardio-metabolic health, but the underlying mechanisms remain unclear. Cocoa contains a complex mixture of flavan-3-ols. Epicatechin, a major monomeric flavan-3-ol, is considered to contribute to the cardio-protective effects of cocoa. We investigated effects of pure epicatechin supplementation on whole genome gene expression profiles of circulating immune cells. Methods: In a randomized, double blind, placebo-controlled cross-over trial, 37 (pre)hypertensive (40-80y) subjects received two 4-week interventions; epicatechin (100mg/day) or placebo with a wash-out period of 4-week between both interventions. Whole genome gene expression profiles of peripheral blood mononuclear cells were determined before and after both interventions. Results: After epicatechin supplementation 1180 genes were significantly regulated, of which 234 were also significantly regulated compared to placebo. Epicatechin supplementation up-regulated gene sets involved in transcription/translation and tubulin folding and down-regulated gene sets involved in inflammation. Only a few genes within these regulated gene sets were actually significantly changed upon epicatechin supplementation. Upstream regulators that were shown to be inhibited were classified as cytokine or inflammatory type molecules. Conclusion: Pure epicatechin supplementation modestly reduced gene expression related to inflammation signalling routes in circulating immune cells. These routes are known to play a role in cardiovascular health

Publication Title

Pure flavonoid epicatechin and whole genome gene expression profiles in circulating immune cells in adults with elevated blood pressure: A randomised double-blind, placebo-controlled, crossover trial.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE157746
Expression data from wild-type and cardiac specific miR-125b-1 knockout neonatal hearts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

MicroRNA-125b is abundant in hearts while its function is not well understood. We used microarray to investigate the global changes of transcriptome for functional evaluation.

Publication Title

Cardiac-specific microRNA-125b deficiency induces perinatal death and cardiac hypertrophy.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact