AIM: To detect differences in transcriptional profiles after knocking down Brca1, Bard1 or Wdr5, compared to a negative control in early reprogramming to pluripotency. DESCRIPTION: RNA-seq profiles of early reprogramming mouse embryonic fibroblasts (MEFs) transduced with lentivirus containing doxycycline-inducible OSKM factors to induce pluripotency . Before starting reprogramming, OSKM-MEFs were transfected with different siRNAs and then they were reprogrammed for 3 or 6 days. Overall design: The control sample consists of cells transfected with non-targeting siRNA. The other samples were transfected with either siBrca1, siWdr5 or siBard1. For every knockdown there is a biological replicate.
The corepressor NCOR1 and OCT4 facilitate early reprogramming by suppressing fibroblast gene expression.
Cell line, Subject
View SamplesAIM: To find molecular signatures associated to the siRNA-mediated knockdowns in order to be able to identify similarities among different knockdowns. DESCRIPTION: Each sample includes biological triplicates for 35 siRNA-mediated knockdowns targeting 30 chromatin-associated proteins during in early reprogramming to iPS at day 6. A daily timecourse from reprogramming cells, without treatment from MEFs until day 6 is also included in triplicate. Overall design: RNA was harvested for all samples in bulk and the CELSeq2 method was used to prepare the RNAseq libraries
The corepressor NCOR1 and OCT4 facilitate early reprogramming by suppressing fibroblast gene expression.
Cell line, Subject
View SamplesSnail1 transcriptional factor is essential for triggering epithelial-to-mesenchymal transition (EMT) and inducing tumor cell invasion. We report here that Snail1 plays also a key role in tumor associated fibroblasts since is necessary for enhancement by these cells on epithelial cells tumor invasion. Snail1 expression in fibroblast requires signals derived from tumor cells such as TGF-b; reciprocally, in fibroblasts Snail1 organizes a complex program that favors collective invasion of epithelial cells at least in part by the secretion of diffusible signaling molecules, such as prostaglandin E2. The capability of human or murine tumor-derived cancer associated fibroblasts to promote tumor invasion is associated to Snail1 expression and obliterated by Snail1 depletion. In vivo experiments show that tumor cells co-transplanted with Snail1 depleted fibroblasts show lower invasion than those xenografted with control fibroblasts. Finally Snail1 depletion in mice prevents the formation of breast tumors and decreased their invasion. Therefore, these results demonstrate that the role of Snail1 in tumor invasion is not limited to its effect in EMT but dependent on its expression in stromal fibroblasts where it orchestrates its activation and the crosstalk with epithelial cells.
Snail1-Dependent Activation of Cancer-Associated Fibroblast Controls Epithelial Tumor Cell Invasion and Metastasis.
Specimen part
View SamplesSerotonin in the mammary gland is known to regulate processes such as calcium homeostasis, tight junction permeability, and milk protein gene expression. The objective of this study was to discover novel genes, pathways and functions which serotonin modulates during lactation. The rate-limiting enzyme in the synthesis of non-neuronal serotonin is tryptophan-hydroxylase (TPH1). Therefore, we used TPH1 knock-out mice dams (serotonin deficient) and compared them to wild-type dams and also Tph1 deficient dams injected daily with 5-HTP. Mammary gland tissues were collected on day 10 of lactation and then analyzed by RNA sequencing. Overall design: Genome-wide gene expression profiles of 12 mouse mammary gland samples were evaluated using RNA sequencing; these 12 samples belong to wild-type dams (WT; n = 4), Tryptophan hydroxylase (Tph1) knock-out dams (KO; Tph1 deficient; n = 4), and Tph1 deficient dams injected daily with 5-HTP (RC; n = 4). Mammary tissues were collected on day 10 of lactation and then underwent RNA extraction, library generation, and subsequent sequencing.
Transcriptomic Analysis of the Mouse Mammary Gland Reveals New Insights for the Role of Serotonin in Lactation.
No sample metadata fields
View SamplesTo understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development (veraison and ripening) in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process.
Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.
Age, Specimen part
View SamplesTranscriptome of CDKN1C-siRNA-injected embryos were compared to sham-injected embryos using RNA-sequencing to determine the genes and pathways downstream of the silenced gene that may have been altered. Overall design: Transcriptome comparison between two pools of embryos (i.e. CDKN1C-siRNA-injected vs sham-injected embryos)
Knockdown of CDKN1C (p57(kip2)) and PHLDA2 results in developmental changes in bovine pre-implantation embryos.
Specimen part, Subject
View SamplesSilicosis, a fibrotic granulomatous lung disease, may occur through accidental high-dose or occupational inhalation of silica, leading to acute/accelerated and chronic silicosis, respectively. While chronic silicosis has a long asymptomatic latency, lung inflammation and apoptosis are hallmarks of acute silicosis. In animal models, histiocytic granulomas develop within days after high-dose intratracheal silica instillation. However, following chronic inhalation of occupationally relevant doses of silica, discrete granulomas resembling human silicosis arise months after the final exposure without significant lung inflammation/apoptosis. To identify molecular events associated with chronic silicosis, lung RNAs from controls or chronically silica-exposed rats were analyzed by Affymetrix at 28 wk after silica exposures. Results suggested a significant upregulation of 144 genes and downregulation of seven genes. The upregulated genes included complement cascade, chemokines/chemokine receptors, G-protein signaling components, metalloproteases, and genes associated with oxidative stress. To examine the kinetics of gene expression relevant to silicosis, qPCR, ELISA, Luminex-bead assays, Western blotting, and/or zymography were performed on lung tissues from 4 d, 28 wk, and intermediate times after chronic silica exposure and compared with 14 d acute silicosis samples. Results indicated that genes regulating fibrosis (secreted phosphoprotein-1, CCL2, and CCL7), redox enzymes (superoxide dismutase-2 and arginase-1), and the enzymatic activities of matrix metalloproteinases 2 and 9 were upregulated in acute and chronic silicosis; however, proinflammatory cytokines were strongly upregulated only in acute silicosis. Thus, inflammatory cytokines are associated with acute but not chronic silicosis; however, genes regulating fibrosis, oxidative stress, and metalloproteases may contribute to both acute and chronic silicosis.
Fibrogenic and redox-related but not proinflammatory genes are upregulated in Lewis rat model of chronic silicosis.
Specimen part, Treatment
View SamplesDrug-induced alterations in transcriptional regulation play a central role in establishing the persistent neuroplasticities that occur during drug addiction. Additionally, changes in gene expression associated with drug administration provide valuable insight into the molecular basis of drug abuse. The molecular mechanisms that underlie susceptibility to psychostimulant addiction remain unknown. Identifying the common gene transcriptional responses to psychostimulants can provide a mechanistic insight to elucidate the molecular nature of drug dependence.
Neuronal development genes are key elements mediating the reinforcing effects of methamphetamine, amphetamine, and methylphenidate.
Specimen part
View SamplesIn rice (Oryza sativa L.), the haplotype at the multigenic SUBMERGENCE 1 (SUB1) locus determines survival of prolonged submergence. SUB1 encodes two or three group VII Ethylene Response Factor (ERF) family transcription factors, SUB1A, SUB1B and SUB1C. A highly submergence-inducible SUB1A allele is present in lines that are submergence tolerant. This gene is the determinant of submergence tolerance. Here, the heterologous ectopic expression of rice SUB1A and SUB1C in Arabidopsis thaliana was employed to assess the transcriptional network mobilized by ectopic expression of SUB1A and SUB1C.
Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism.
Specimen part
View SamplesKlotho is critical for the survival of triple negative breast cancer (TNBC) cells HCC1395, since its depletion leads to decreased cell viability, cell cycle arrest and apoptosis.
γKlotho is a novel marker and cell survival factor in a subset of triple negative breast cancers.
Specimen part, Cell line
View Samples