Blood-retina barrier (BRB) formation and retinal angiogenesis depend on beta-catenin signaling induced by the ligand norrin (NDP), the receptor frizzled4 (FZD4), co-receptor LRP5, and the tetraspanin TSPAN12. Impaired NDP/FZD4 signaling causes familial exudative vitreoretinopathy (FEVR), which may lead to blindness. Endothelial-cell specific inactivation of the Tspan12 gene at P28 using a Cdh5-CreERT2 driver shows that TSPAN12 functions in ECs to promote vascular morphogenesis and BRB formation in developing mice, and BRB maintenance in adult mice. 12 month after Tspan12 inactivation and loss of BRB maintenance with massive IgG and albumin extravasation we observe complement activation, cystoid edema, and impaired beta-wave in electroretinograms. RNA-Seq 6 month after Tspan12 inactivation provides a detailed view on the transcriptional response, including activation of antibody effector systems (complement and Fc receptors), inflammation and microglia responses, extracellular matrix organization and remodeling, and other responses. Overall design: Endothelial cell-specific inactivation of floxed Tspan12 was induced at P28 using a Cdh5-CreERT2 driver and total retina RNA (ribodepleted) from 4 control or ECKO retinas (8 samples) was subjected to RNA-Seq 6 months later
Endothelial Cell-Specific Inactivation of TSPAN12 (Tetraspanin 12) Reveals Pathological Consequences of Barrier Defects in an Otherwise Intact Vasculature.
Specimen part, Cell line, Subject
View SamplesWe previously identified the induction of growth arrest with phenotypic characteristics of senescence in melanoma cell lines sensitive to diterpene esters, indicating a therapeutic potential. Here we compared the cytostatic effects of two diterpene esters namely TPA (12-O-tetradecanoylphorbol-13-acetate) and PEP008 (20-O-acetyl-ingenol-3-angelate) in sensitive and resistant cell lines derived from melanoma, breast cancer and colon cancer. We showed the diterpene esters to induce senescence-like growth arrest in the sensitive cells at 100-1000 ng/ml. Use of the pan-PKC inhibitor bisindolylmaleimide-l demonstrated that activation of PKC was required for growth arrest. Full genome expression profiling revealed that pivotal genes involved in DNA synthesis and cell cycle control were down-regulated by treatment in all three sensitive solid tumor models. At the protein level, prolonged down-regulation of E2F-1 and proliferating cell nuclear antigen (PCNA), sustained expression of p21WAF1/CIP1 and dephosphorylation of retinoblastoma (Rb) occurred in the sensitive cells. Although activation of extracellular signal-related kinase (ERK) 1/2 by the diterpene esters occurred in both sensitive and resistant cell lines, the HRASLS3 type II tumor suppressor, which appears to have a role in MAPK pathway suppression, was constitutively elevated in the resistant cell lines compared to their sensitive counterparts. Together, these results demonstrate the ability of the PKC activating drugs TPA and PEP008 to induce growth arrest with characteristics of senescence in solid tumor cell lines derived from a variety of tissue types through a similar mechanism. PKC-activating diterpene esters may therefore have therapeutic potential in a range of solid tumors.
Induction of senescence in diterpene ester-treated melanoma cells via protein kinase C-dependent hyperactivation of the mitogen-activated protein kinase pathway.
No sample metadata fields
View SamplesEarly chemotherapy for advanced/metastatic non-castration resistant prostate cancer (PCa) may improve overall patient survival. We studied the safety, tolerability and early efficacy of up-front docetaxel chemotherapy and androgen deprivation therapy (ADT) versus ADT alone for patients with newly-diagnosed advanced/metastatic PCa. As proof of concept, we undertook in vivo gene expression profiling by next generation RNA sequencing (RNA-Seq). Overall design: Tumour biposies from 6 patients were taken before and after treatment with combined ADT and docetaxcel for 6 weeks
Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre- and post-treatment prostatic biopsies from patients with advanced prostate cancer.
Specimen part, Subject, Time
View SamplesAndrogen ablation therapy (AAT) is standard treatment for locally-advanced/metastatic prostate cancer (PCa). Many patients develop castration-resistance (CRPCa) after ~2-3 years, with a poor prognosis. The molecular mechanisms underlying CRPCa progression are unclear. mRNA-Seq was performed on tumours from 7 patients with locally-advanced/metastatic PCa before and ~22 weeks after AAT initiation. Differentially regulated genes were identified in treatment pairs. Overall design: Tumour biopsies from 7 patients were taken before and after AAT treatment
Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy.
Specimen part, Subject, Time
View SamplesVoluntary exercise reduces the risk of cancer and lowers the risk of disease recurrence. Yet the mechanisms for this protection remain to be elucidated. Here we demonstrate that exercise halves tumor growth through an exercise-dependent mobilization and intratumoral infiltration of NK cells in malignant melanoma. Using voluntary wheel running, we show that exercise prior to and during B16 tumor challenge reduced tumor growth by 67%, and this reduction was associated with increased inflammation and immune cell infiltrates, especially NK cells, in the tumors from exercising mice. Depletion of NK cells blunted the exercise-dependent reduction in tumor growth. Moreover, during exercise, NK cells were engaged through an epinephrine-dependent mobilization to the circulation and redistributed to peripheral tissues through an IL-6 dependent mechanism. This study highlights the importance of exercise-dependent immune regulation in the control of malignant melanoma
Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution.
Sex, Specimen part
View SamplesSkeletal muscle is one of the primary tissues involved in the development of type 2 diabetes (T2D). Obesity is tightly associated with T2D, making it challenging to isolate specific effects attributed to the disease alone. By using an in vitro myocyte model system we were able to isolate the inherent properties retained in myocytes originating from donor muscle precursor cells, without being confounded by varying extracellular factors present in the in vivo environment of the donor. We generated and characterized transcriptional profiles of myocytes from 24 human subjects, using a factorial design with two levels each of the factors T2D (healthy or diseased) and obesity (non-obese or obese), and determined the influence of each specific factor on genome-wide transcription. We identified a striking similarity of the transcriptional profiles associated independently with T2D or obesity. Obesity thus presents an inherent phenotype in skeletal myocytes, similar to that induced by T2D. Through bioinformatics analysis we found a candidate epigenetic mechanism, H3K27me3 histone methylation, mediating the observed transcriptional signatures. Functional characterization of the expression profiles revealed dysregulated myogenesis and down-regulated muscle function in connection with T2D and obesity, as well as up-regulation of genes involved in inflammation and the extracellular matrix. Further on, we identified a metabolite subnetwork involved in sphingolipid metabolism and affected by transcriptional up-regulation in T2D. Collectively, these findings pinpoint transcriptional changes that are hard-wired in skeletal myocytes in connection with both obesity and T2D. Overall design: Isolated skeletal muscle precursor cells from 24 males and females (6 normal glucose tolerant, 6 obese, 6 type 2 diabetic, and 6 obese and type 2 diabetic) were differentiated in vitro and stimulated with insulin. RNA from fully differentiated myotubes sampled at 0, 0.5, 1, and 2 hours after insulin stimulation was quantified using RNA-seq (96 samples in total). The 6 base-line (0h) samples from normal glucose tolerant individuals are available under the submission GSE63887, the remaining 90 samples are contained in this submission.
Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes.
No sample metadata fields
View SamplesSkeletal myocytes are metabolically active and susceptible to insulin resistance, thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes and their elucidation at the systems level requires genome-wide data and biological networks. Genome-scale metabolic models (GEMs) provide a network-context to integrate high-throughput data. We generated myocyte-specific RNA-seq data and investigated their correlation with proteome data. These data were then used to reconstruct a comprehensive myocyte GEM. Next, we performed a meta-analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism, connected through the down-regulated dihydrolipoamide dehydrogenase. Strikingly, the gene signature underlying this metabolic regulation successfully classifies the disease state of individual samples, suggesting that regulation of these pathways is a ubiquitous feature of myocytes in response to T2D. Overall design: Isolated skeletal muscle precursor cells from six normal glucose tolerant and non-obese males and females were differentiated in vitro. RNA from fully differentiated myotubes was sequenced using RNA-seq.
Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma.
Specimen part
View SamplesGlobal gene expression in TET2 mutant and Wild type patients. We performed an integrated analysis of global DNA methylation and gene expression data to investigate the effects of DNA hypermethylation on gene expression.
Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma.
Specimen part
View SamplesRett syndrome (RTT) is an X-linked dominant neurodevelopmental disorder caused by mutations in MECP2, encoding methyl-CpG binding protein 2. MeCP2 is a transcriptional repressor elevated in mature neurons and is predicted to be required for neuronal maturation by regulating multiple target genes. Identifying primary gene targets in either Mecp2-deficient mice or human RTT brain has proven to be difficult, perhaps because of the transient requirement for MeCP2 during neuronal maturation. In order to experimentally control the timing of MeCP2 expression and deficiency during neuronal maturation, human SH-SY5Y cells undergoing mature neuronal differentiation were transfected with methylated MeCP2 oligonucleotide decoy to disrupt the binding of MeCP2 to endogenous targets. Genome-wide expression microarray analysis identified all four known members of the inhibitors of differentiation or inhibitors of DNA binding (ID1, ID2, ID3 and ID4) subfamily of helix-loop-helix (HLH) genes as novel neuronal targets of MeCP2. Chromatin immunoprecipitation analysis confirmed binding of MeCP2 near or within the promoters of ID1, ID2 and ID3, and quantitative RT-PCR confirmed increased expression of all four Id genes in Mecp2-deficient mouse brain. All four ID proteins were significantly increased in Mecp2-deficient mouse and human RTT brain using immunofluorescence and laser scanning cytometric analyses. Because of their involvement in cell differentiation and neural development, ID genes are ideal primary targets for MeCP2 regulation of neuronal maturation that may explain the molecular pathogenesis of RTT.
Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome.
No sample metadata fields
View Samples