A large body of evidence has demonstrated that many human tumors are maintained by a small cell population called cancer stem cells (CSCs) or tumor progenitors, which are responsible for tumor formation, therapy resistance and metastasis. We found that ionizing radiation treatment enriches for the CSC phenotype and properties by preferential survival and expansion of tumor progenitor cells. Our studies revealed that aldehyde dehydrogenase (ALDH) activity is indicative of prostate tumor progenitor cells with increased chemo- and radioresistance, enhanced migratory potential, improved DNA- double strand break repair and activation of the signaling pathways, which promote self-renewal and epithelial-mesenchymal transition. We found that X-ray irradiation can convert the bulk tumor cells to more clonogenic and radioresistant population positive for expression of CSC markers. For the first time we showed that irradiation increases histone H3K4 and H3K36 methylation in prostate cancer cells, thereby reactivating transcription of epigenetically silenced target genes. We showed that radioresistant tumor progenitor population undergoes a phenotypical switching during the course of irradiation, suggesting that controlling the phenotypical and functional properties of CSCs during radiation therapy is ultimative for the optimization of treatment strategies. Our studies have shown that CSC markers may be beneficial in prediction of tumor radiocurability, and combination of irradiation with therapies directed against CSCs can be a useful strategy to improve cancer treatment.
Aldehyde Dehydrogenase Is Regulated by β-Catenin/TCF and Promotes Radioresistance in Prostate Cancer Progenitor Cells.
Specimen part
View SamplesBackground: Antimalarials have anticancer potential. Results: We have systematically tested five distinct antimalaria drugs in a panel of cancer cell lines. Conclusion: Three antimalarial classes display potent antiproliferative activity, and their potency is correlated with cancer cell gene expression patterns. Significance: We confirm and extend anticancer potential of these antimalarials and we discuss their therapeutic potential based on clinical data.
Anticancer properties of distinct antimalarial drug classes.
Sex, Age, Cell line
View SamplesHuman induced pluripotent stem cells (iPS cells) resemble embryonic stem cells and can differentiate into cell derivatives of all three germ layers. However, frequently the differentiation efficiency of iPS cells into some lineages is rather poor. Here, we found that fusion of iPS cells with human hematopoietic stem cells (HSC) enhances iPS cell differentiation. Such iPS hybrids showed a prominent differentiation bias towards hematopoietic lineages but also towards other mesendodermal lineages. Additionally, during differentiation of iPS hybrids expression of early mesendodermal markers - Brachyury (T), MIX1 Homeobox-Like Protein 1 (MIXL1) and Goosecoid (GSC) - appeared with faster kinetics than in parental iPS cells. Following iPS hybrid differentiation there was a prominent induction of NODAL and inhibition of NODAL signaling blunted mesendodermal differentiation. This indicates that NODAL signaling is critically involved in mesendodermal bias of iPS hybrid differentiation. In summary, we demonstrate that iPS cell fusion with HSC prominently enhances iPS differentiation.
Cell fusion enhances mesendodermal differentiation of human induced pluripotent stem cells.
Specimen part
View SamplesDemonstration of reduced biological effects with a prototypic modified risk tobacco product.
A 28-day rat inhalation study with an integrated molecular toxicology endpoint demonstrates reduced exposure effects for a prototypic modified risk tobacco product compared with conventional cigarettes.
Sex, Specimen part, Treatment
View SamplesOsteoarthritis (OA) of the hand is a common disease resulting in pain and impaired function. The pathogenesis of hand OA (HOA) is elusive and models to study it have not been described so far. Culture of chondrocytes is a model to study the development of cartilage degeneration, which is a hallmark of OA and well established in OA of the knee and hip. In the current study we investigated the feasibility human chondrocyte culture derived from proximal interphalangeal (PIP) finger joints of dissecting room cadavers. Index and middle fingers without signs of osteoarthritis were obtained from 30 cadavers using two different protocols. Hyaline cartilage from both articulating surfaces of the proximal interphalangeal (PIP) joint was harvested and digested in collagenase. Cultured chondrocytes were monitored for contamination, viability, and expression of chondrocyte specific genes. Chondrocytes derived from knee joints of the cadavers were cultured under identical conditions. Gene expression comparing chondrocytes from PIP and knee joints was carried out using Affymetrix GeneChip Human 2.0 ST arrays. The resulting differentially expressed genes were validated by real-time PCR and immunohistochemistry.Chondrocytes harvested up to 101 hours after death of the donors were viable. mRNA expression of collagen 2A1, aggrecan and Sox9 was significantly higher in chondrocytes as compared to cultured fibroblasts. Comparison of gene expression by chondrocytes from PIP and knee joints yielded 528 differentially expressed genes. Chondrocytes from the same joint region had a higher grade of similarity than chondrocytes of the same individual. These results were validated using real-time PCR and immunohistochemistry.We demonstrate for the first time a reliable method for culture of chondrocytes derived from PIP joints. PIP chondrocytes show a specific gene expression pattern and could be used as tool to study cartilage degeneration in HOA.
Chondrocyte cultures from human proximal interphalangeal finger joints.
Sex, Specimen part
View SamplesThis dataset encompassing the profiles of 150 lung cancer tumors was developed to serve as test dataset in the SBV IMPROVER Diagnostic Signature Challenge (sbvimprover.com). The aim of this subchallenge was to verify that it is possible to extract a robust diagnostic signature from gene expression data that can identify stages of different types of lung cancer. Participants were asked to develop and submit a classifier that can stratify lung cancer patients in one of four groups Stage 1 of Adenocarcinoma (AC Stage 1), Stage 2 of Adenocarcinoma (AC Stage 2), Stage 1 of Squamous cell carcinoma (SCC Stage 1) or Stage 2 of Squamous cell carcinoma (SCC Stage 2). The classifier could be built by using any publicly available gene expression data with related histopathological information and was tested on the independent dataset described here.
Strengths and limitations of microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature Challenge.
Sex, Specimen part, Disease stage, Race
View SamplesSomatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN). However, the mechanism by which mutant CALR is oncogenic is unknown. Here, we demonstrate that a megakaryocytic-specific MPN phenotype is induced when mutant CALR is over-expressed in mice and that the thrombopoietin receptor, MPL is required for mutant CALR driven transformation. Whole transcriptome analysis reveals enrichment of STAT signatures in mutant CALR transformed cells and JAK2 inhibitor treatment abrogates STAT activation. Employing extensive mutagenesis-based structure-function analysis we demonstrate that the positively charged amino acids within the mutant CALR C-terminus are required for cellular transformation through facilitating physical interaction between mutant CALR and MPL. Together, our findings elucidate a novel mechanism of cancer pathogenesis. Overall design: Transcriptomes derived from BA/F3-MPL cells transformed with human wild-type CALR, human mutant CALR 52bp del, or Empty vector, at time zero (t0) and 24 hours (t24) after IL3-withdrawal culture were generated by deep sequencing, two replicas, by HiSeq2000.
Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation.
Cell line, Subject
View SamplesThe transcription factor farnesoid X receptor (FXR) governs bile acid and energy homeostasis, is involved in inflammation, and has protective functions in the liver. In the present study we investigated the effect of Fxr deficiency in mouse precision cut liver slices (PCLS) exposed to a model hepatotoxicant cyclosporin A (CsA). It was anticipated that Fxr deficiency could aggravate toxicity of CsA in PCLS and pinpoint to novel genes/processes regulated by FXR.
Cyclosporin A induced toxicity in mouse liver slices is only slightly aggravated by Fxr-deficiency and co-occurs with upregulation of pro-inflammatory genes and downregulation of genes involved in mitochondrial functions.
No sample metadata fields
View SamplesERRa and ERRg are essential transcriptional regulators of cardiac metabolism and functions. Here we extend our previous studies by analyzing the transcriptome changes in ERRa/ERRg KO hearts Overall design: RNA from 16-day-old mouse hearts were used. 2-3 mice per sample, 2 samples per genotype, 4 genotypes (aHetgWT, aHetgKO, aKOgWT, aKOgKO)
Single-nucleus transcriptomic survey of cell diversity and functional maturation in postnatal mammalian hearts.
Specimen part, Cell line, Subject
View SamplesA summary of the work associated to these microarrays is the following:
Role of caveolin 1, E-cadherin, Enolase 2 and PKCalpha on resistance to methotrexate in human HT29 colon cancer cells.
Specimen part, Cell line
View Samples