This SuperSeries is composed of the SubSeries listed below.
Direct genesis of functional rodent and human schwann cells from skin mesenchymal precursors.
Specimen part
View SamplesRecent reports of directed reprogramming have raised questions about the stability of cell lineages. Here, we have addressed this issue, focusing upon skin-derived precursors (SKPs), a dermally-derived precursor cell. We show by lineage tracing that murine SKPs from dorsal skin originate from mesenchymal and not neural crest-derived cells. These mesenchymally-derived SKPs can, without genetic manipulation, generate functional Schwann cells, a neural crest cell type, and are highly similar at the transcriptional level to Schwann cells isolated from the peripheral nerve. This is not a mouse-specific phenomenon, since human SKPs that are highly similar at the transcriptome level can be made from facial (neural crest-derived) and foreskin (mesodermally-derived) dermis, and the mesodermally-derived SKPs can make myelinating Schwann cells. Thus, non-neural crest-derived mesenchymal precursors can differentiate into bona fide peripheral glia in the absence of genetic manipulation, suggesting that developmentally-defined lineage boundaries are more flexible than widely thought.
Direct genesis of functional rodent and human schwann cells from skin mesenchymal precursors.
Specimen part
View SamplesRecent reports of directed reprogramming have raised questions about the stability of cell lineages. Here, we have addressed this issue, focusing upon skin-derived precursors (SKPs), a dermally-derived precursor cell. We show by lineage tracing that murine SKPs from dorsal skin originate from mesenchymal and not neural crest-derived cells. These mesenchymally-derived SKPs can, without genetic manipulation, generate functional Schwann cells, a neural crest cell type, and are highly similar at the transcriptional level to Schwann cells isolated from the peripheral nerve. This is not a mouse-specific phenomenon, since human SKPs that are highly similar at the transcriptome level can be made from facial (neural crest-derived) and foreskin (mesodermally-derived) dermis, and the mesodermally-derived SKPs can make myelinating Schwann cells. Thus, non-neural crest-derived mesenchymal precursors can differentiate into bona fide peripheral glia in the absence of genetic manipulation, suggesting that developmentally-defined lineage boundaries are more flexible than widely thought.
Direct genesis of functional rodent and human schwann cells from skin mesenchymal precursors.
Specimen part
View SamplesThe production of Tobacco Acid Pyrophosphatase (TAP), an enzyme commonly used for the removal of the 5’cap of eukaryotic mRNAs, has been recently discontinued. Here we performed a comparison of current alternatives for the mapping of 5’cap mRNAs and the associated transcription start sites in Sacharomyces cerevisiae. Specifically we compared TAP with Cap-clip and a Decapping Pyrophosphohydrolase. Our results suggest that Cap-clip is a good alternative for TAP. Overall design: We used two biological replicates of S. cerevisiae that was grown to exponential phase (OD600 ~1) in rich media (YPAD). Samples where processed until the dephosphorylation step (CIP treatment). After that each sample was split in 4 aliquots: TAP treatment, Cap-Clip treatment, Decapping Pyrophosphohydrolase treatment or no treatment (negative control). From that step all samples are processed in parallel.
Widespread Co-translational RNA Decay Reveals Ribosome Dynamics.
Treatment, Subject
View SamplesThe role of androgen in breast cancer development is not fully understood although androgen receptors (AR) have been identified in breast cancer clinical samples and cell lines. However the whole spectra of androgen actions cannot be accounted to the classic AR mode of action and the possible existence of a cell surface AR has been suggested. Indeed androgens like all steroids have been reported to trigger membrane initiated signaling activity and exert specific actions. Androgens acting on the membrane can rapidly activate kinase signaling pathways and ultimately could affect gene expression. However, the molecular nature of membrane androgen binding sites represents another major persisting question. In the present study, we investigated early transcriptional effects of testosterone and the impermeable testosterone-BSA conjugate, in two breast cancer cell lines, in an attempt to decipher specific genes modified in each case, providing evidences about specific membrane initiating actions. Our data indicate that the two agents tested affect the expression of several genes. A group of genes were commonly affected while others were uniquely modified by each agent. In MDA-MB-231 cells, that are AR negative, the majority of genes affected by testosterone were also affected by testosterone-BSA indicating a membrane action. Subsequent analysis revealed that the two agents trigger different molecular pathways and cellular/molecular functions, suggestive of a molecular heterogeneity of membrane and intracellular AR. In addition, the phenotypic interactions of membrane-acting androgen with growth factor were verified at the transcriptomic level. Finally an interesting interplay between membrane-acting androgen with inflammation-related molecules, with potential clinical implications was revealed.
Conjugated and non-conjugated androgens differentially modulate specific early gene transcription in breast cancer in a cell-specific manner.
Specimen part, Cell line
View SamplesTransgenic rice plants expressing isopentenyltransferase (IPT), an enzyme that catalyzes the rate-limiting step in CK synthesis under the control of SARK, a maturation- and stress-inducible promoter. Increased CK production resulted in sink source alteration and enhanced drought tolerance of the transgenic plants.
Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress.
Age, Specimen part
View SamplesThe use of alternative polyadenylation sites is common and affects the post-transcriptional fate of mRNA, including its stability, localization, and translation. Here we present a method for genome-wide and strand-specific mapping of poly(A) sites and quantification of RNA levels at unprecedented efficiency by using an on-cluster dark T-fill procedure on the Illumina sequencing platform. Our method outperforms former protocols in quality and throughput, and reveals new insights into polyadenylation in Saccharomyces cerevisiae. Overall design: Experimental benchmark of five different protocols (3tfill, bpmI, internal, rnaseq and yoon) for genome-wide identification of polyadenylation sites in Saccharomyces cerevisiae and transcript quantification. RNA was extracted from WT cells grown in glucose (ypd) or galactose (ypgal) as carbon source. The same RNA was used for 3 independent library constructions (technical replicates, rep).
An efficient method for genome-wide polyadenylation site mapping and RNA quantification.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells.
Cell line
View SamplesHere we quantified the transcription start site usage in a WT strain (BY4741) and a ?set2 strain associated with the appearence of cryptic transcription start sites. Overall design: Transcription start site usage was quantified using the 5’cap sequencing aproach for S. cerevisiae strains. Biological duplicates were included.
A high-throughput ChIP-Seq for large-scale chromatin studies.
Cell line, Subject
View SamplesER17p is a synthetic peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ER) and initially synthesized to mimic its calmodulin binding site. ER17p was subsequently found to elicit estrogenic responses in E2-deprived ER-positive breast cancer cells, increasing proliferation and E2-dependent gene transcription. Surprisingly, in E2-supplemented media, ER17p induced apoptosis and modified the actin network, influencing thereby cell motility. Here, we report that ER17p induces a massive early (3h) transcriptional activity in breast cancer cell lines SKBR3). Remarkably, about 75% of the significantly modified transcripts were also modified by E2, confirming the pro-estrogenic profile of ER17p. The different ER spectra of the used cell lines allowed us to extract a specific ER17p signature related to ER and its variant ER36. With respect to ER, the peptide activates nuclear (cell cycle, cell proliferation, nucleic acid and protein synthesis) and extranuclear signaling pathways. In contrast, through ER36 it exerts inhibitory events on inflammation and cell cycle and inhibition of EGFR signaling. This is the first work reporting ER36 specific transcriptional effects. The fact that a number ER17p-induced transcripts is different from those activated by E2 revealed that the apoptosis and actin modifying effects of ER17p are independent from the ER-related actions of the peptide.
Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells.
Cell line
View Samples