Protein synthesis belongs to the most energy consuming processes in the cell. Lowering oxygen tension below normal (hypoxia) causes a rapid inhibition of global mRNA translation due to the decreased availability of energy. Interestingly, subsets of mRNAs pursue active translation under such circumstances. In human fibrosarcoma cells (HT1080) exposed to prolonged hypoxia (36 h, 1% oxygen) we observed that transcripts are either increasingly or decreasingly associated with ribosomes localized at the endoplasmic reticulum (ER). In a global setting it turned out that only 31% of transcripts showing elevated total-RNA levels were also increasingly present at the ER in hypoxia. These genes, regulated by its expression as well as its ER-localization, belong to the gene ontologys hypoxia response, glycolysis and HIF-1 transcription factor network supporting the view of active mRNA translation at the ER during hypoxia. Interestingly, a large group of RNAs was found to be unchanged at the expression level, but translocate to the ER in hypoxia. Among these are transcripts encoding translation factors and >180 ncRNAs. In summary, we provide evidence that protein synthesis is favoured at the ER and, thus, partitioning of the transcriptome between cytoplasmic and ER associated ribosomes mediates adaptation of gene expression in hypoxia.
Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum.
Specimen part, Cell line
View SamplesGraft-versus-host disease (GVHD) is the most serious complication of allogeneic hematopoietic cell transplantation. Notch signals delivered during the first 48 hours after transplantation drive proinflammatory cytokine production in conventional T cells (Tconv) and inhibit expansion of regulatory T cells (Tregs). Short-term Notch inhibition induces long-term GVHD protection. However, it remains unknown whether Notch blockade blunts GVHD through its effects on Tconv, Tregs, or both, and what early Notch-regulated molecular events occur in alloantigen-specific T cells. To address these questions, we engineered T cell grafts to achieve selective Notch blockade in Tconv vs. Tregs and evaluated their capacity to trigger GVHD in mice. Notch blockade in Tconv was essential for GVHD protection, as GVHD severity was similar in recipients of wild-type Tconv combined with Notch-deprived vs. wild-type Tregs. To identify the impact of Notch signaling on the earliest steps of T cell activation in vivo, we established a new acute GVHD model mediated by clonal alloantigen-specific 4C CD4+ Tconv. Notch-deprived 4C T cells had preserved early steps of activation, IL-2 production, proliferation, and T helper polarization. In contrast, Notch inhibition dampened IFN-? and IL-17 production, diminished mTORC1 and ERK1/2 activation, and impaired transcription of a subset of Myc-regulated genes. The distinct Notch-regulated signature had minimal overlap with known Notch targets in T cell leukemia and developing T cells, highlighting the specific impact of Notch signaling in mature T cells. Our findings uncover a unique molecular program associated with pathogenic effects of Notch in T cells at the earliest stages of GVHD. Overall design: 4 samples per cohort (Notch blockade using Dll1/4 neutralizing antibodies vs isotype control antibodies - GD) were analyzed. Additional 4 samples contained 4C T cells retrieved from syngeneic recipients.
Early Notch Signals Induce a Pathogenic Molecular Signature during Priming of Alloantigen-Specific Conventional CD4<sup>+</sup> T Cells in Graft-versus-Host Disease.
Specimen part, Cell line, Treatment, Subject
View SamplesExperimental asthma was induced in BALB/c mice by sensitization and challenge with the allergen ovalbumin. Control groups received PBS. To investigate the innate immune component of experimental asthma, we also analyzed recombinase activating gene (RAG) deficient mice following exposure to ovalbumin and control PBS
Hubs in biological interaction networks exhibit low changes in expression in experimental asthma.
No sample metadata fields
View SamplesSystemic vaccination with the attenuated virus SIVmac239-Nef provides sterilizing or partial protection to rhesus monkeys challenged with WT SIV strains, providing important opportunities to study key immunological components of a protective host response. Here we show that intravenous vaccination with SIVmac239-Nef provides two potentially crucial immunological barriers localized at mucosal surfaces that correlate with the vaccines protective effects against WT SIVmac251 vaginal challenge: 1) a conditioned and coordinated response from the mucosal epithelium that blunts the early inflammatory and chemotactic signalling cascade that aids virus propagation and expansion; 2) early on-site generation/diversification of SIV-specific Abs from ectopic germinal center-like lymphoid aggregates. This unique host response to WT SIVmac251 in the female reproductive tract of SIVmac239-Nef-vaccinated animals points to a multi-layered strategy for a protective host response during immunodeficiency virus exposurerapid induction of humroal immunity at mucosal surfaces without the deleterious inflammatory side effects tied to innate recognition of virus. This vaccine-induced host response highlights potential key protective mechanisms needed for an effective HIV vaccine
Live simian immunodeficiency virus vaccine correlate of protection: immune complex-inhibitory Fc receptor interactions that reduce target cell availability.
Sex, Specimen part
View SamplesWe used microarray analysis to investigate if keratinocytes excert an immuno-inflammatory response towards streptococcal M1 protein.
Vigilant keratinocytes trigger pathogen-associated molecular pattern signaling in response to streptococcal M1 protein.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.
Treatment
View SamplesEndothelial colony-forming cells (ECFCs) have been reported as promising cells for regenerative medicine thanks to their angiorepair properties. Transcription factors are primary determinants of the functional capacity of the cells and TAL1 has been shown as a critical regulator of endothelial lineage in both development and adult life. However, only few (three) TAL1 targets have been identified so far in mouse and human endothelial cells. This microarray experiment, where TAL1 expression was knocked-down, was designed to identify TAL1-dependent genes in primary human endothelial stem/progenitor cells.
Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.
Treatment
View SamplesThreatened preterm labor (TPTL) is defined as persistent premature uterine contractions between 20 and 37 weeks of gestation and is the most common condition that requires hospitalization during pregnancy. Most of these TPTL women continue their pregnancies to term while only an estimated 5% will deliver a premature baby within ten days. The aim of this work was to study differential whole blood gene expression associated with spontaneous preterm birth (sPTB) within 48 hours of hospital admission. Peripheral blood was collected at point of hospital admission from 154 women with TPTL before any medical treatment. Microarrays were utilized to investigate differential whole blood gene expression between TPTL women who did (n = 48) or did not have a sPTB (n = 106) within 48 hours of admission. Total leukocyte and neutrophil counts were significantly higher (35% and 41% respectively) in women who had sPTB than women who did not deliver within 48 hours (p<0.001). Fetal fibronectin (fFN) test was performed on 62 women. There was no difference in the urine, vaginal and placental microbiology and histopathology reports between the two groups of women. There were 469 significant differentially expressed genes (FDR<0.05); 28 differentially expressed genes were chosen for microarray validation using qRT-PCR and 20 out of 28 genes were successfully validated (p<0.05). An optimal random forest classifier model to predict sPTB was achieved using the top nine differentially expressed genes coupled with peripheral clinical blood data (sensitivity 70.8%, specificity 75.5%). These differentially expressed genes may further elucidate the underlying mechanisms of sPTB and pave the way for future systems biology studies to predict sPTB.
Whole blood gene expression profile associated with spontaneous preterm birth in women with threatened preterm labor.
Specimen part
View SamplesRDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine) is a synthetic, high-impact, relatively stable explosive that has been in use since WWII. Exposure to RDX can occur either occupationally or through ordnance that lays unexploded on training ranges. The toxicology of RDX is dominated by acute tonic-clonic seizures at high doses, which remit when exposure is removed and internal RDX levels decrease. Sub-chronic studies have revealed few other toxic effects. The objective of this study was to examine the effect of a single oral dose of RDX on global gene expression in the mammalian brain and liver, using a rodent model.
Global gene expression in rat brain and liver after oral exposure to the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Characterization of aldehyde dehydrogenase 1 high ovarian cancer cells: Towards targeted stem cell therapy.
Specimen part, Cell line
View Samples