This SuperSeries is composed of the SubSeries listed below.
c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells.
Specimen part
View SamplesGene expression of Tfap4/ and WT CD8+ T cells were compared after activation with anti-CD3 and anti-CD28 antibodies in vitro or with Listeria monocytogenes infection in vivo
c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells.
No sample metadata fields
View SamplesTo determine functional overlap between cMyc and AP4 in CD8+ T cell priming, we retrovirally expressed cMyc or AP4 in cMyc-deficient CD8+ T cells and examined gene expression after activation.
c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells.
Specimen part
View SamplesInterleukin 2 (IL-2) promotes proliferation and differentiation of CD8+ T cells in vitro and in vivo. To define gene expression regulated by IL-2, we purified naive CD8+ T cells, activated them for 2 days followed by treatment with recombinant IL-2 or with neutralizing antibody against IL-2 and compared gene expression between the two treatments.
c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells.
Specimen part
View SamplesProtein synthesis belongs to the most energy consuming processes in the cell. Lowering oxygen tension below normal (hypoxia) causes a rapid inhibition of global mRNA translation due to the decreased availability of energy. Interestingly, subsets of mRNAs pursue active translation under such circumstances. In human fibrosarcoma cells (HT1080) exposed to prolonged hypoxia (36 h, 1% oxygen) we observed that transcripts are either increasingly or decreasingly associated with ribosomes localized at the endoplasmic reticulum (ER). In a global setting it turned out that only 31% of transcripts showing elevated total-RNA levels were also increasingly present at the ER in hypoxia. These genes, regulated by its expression as well as its ER-localization, belong to the gene ontologys hypoxia response, glycolysis and HIF-1 transcription factor network supporting the view of active mRNA translation at the ER during hypoxia. Interestingly, a large group of RNAs was found to be unchanged at the expression level, but translocate to the ER in hypoxia. Among these are transcripts encoding translation factors and >180 ncRNAs. In summary, we provide evidence that protein synthesis is favoured at the ER and, thus, partitioning of the transcriptome between cytoplasmic and ER associated ribosomes mediates adaptation of gene expression in hypoxia.
Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum.
Specimen part, Cell line
View SamplesWe performed microarray analysis to evaluate differences in the transcriptome of type 2 diabetic human islets compared to non-diabetic islet samples.
Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesMicroarray expression analysis to identify global changes in transcription in response to RAF inhibition.
The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner.
Cell line
View SamplesAnalysis of L-Myc-dependent genes in pDCs and classical DC subsets with and without stimulation.
L-Myc expression by dendritic cells is required for optimal T-cell priming.
Specimen part, Treatment
View SamplesWe used microarray analysis to investigate if keratinocytes excert an immuno-inflammatory response towards streptococcal M1 protein.
Vigilant keratinocytes trigger pathogen-associated molecular pattern signaling in response to streptococcal M1 protein.
Specimen part, Cell line
View SamplesWe used the flu mutant of Arabidopsis and a transgenic line that overexpresses the thylakoid-bound ascorbate peroxidase (tAPX) to address the interactions between different reactive oxygen species (ROS) signaling pathways. The conditional flu mutant of Arabidopsis accumulates excess protochlorophyllide in the dark within chloroplast membranes that upon illumination acts as a photosensitizer and generates singlet oxygen (1O2). Immediately after the release of singlet oxygen rapid changes in nuclear gene expression occur. Distinct sets of genes were activated that were different from those induced by other reactive oxygen species, superoxide or hydrogen peroxide (H2O2), suggesting that different types of active oxygen species activate distinct signaling pathways. It was not known whether the pathways operate separately or interact with each other. We have addressed this problem by modulating noninvasively the level of H2O2 in plastids by means of a transgenic line that overexpresses the thylakoid-bound ascorbate peroxidase (tAPX, line 14/2 PMID: 15165186). In the flu mutant overexpressing tAPX, the expression of most of the nuclear genes that were rapidly activated after the release of 1O2 was significantly higher in flu plants overexpressing tAPX, whereas in wild-type plants, overexpression of tAPX had only a very minor impact on nuclear gene expression. The results suggest that H2O2 antagonizes the 1O2-mediated signaling of stress responses as seen in the flu mutant. This cross-talk between H2O2- and 1O2-dependent signaling pathways might contribute to the overall stability and robustness of wild-type plants exposed to adverse environmental stress conditions.
Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana.
No sample metadata fields
View Samples