Notch1 signaling is absolutely essential for steady-state thymic lymphopoiesis, but the role of other Notch receptors, and their potential overlap with the function of Notch1, remains unclear. Here we show that like Notch1, Notch3 is differentially expressed by progenitor thymocytes, peaking at the DN3 progenitor stage. Using mice carrying a gene-trapped allele, we show that thymic cellularity is slightly reduced in the absence of Notch3, although progression through the defined sequence of TCR- development is normal, as are NKT and TCR cell production.
Nonoverlapping functions for Notch1 and Notch3 during murine steady-state thymic lymphopoiesis.
Sex, Age, Specimen part
View SamplesExercise attenuates the development of chronic non-communicable diseases (NCDs). Gene signaling pathway analysis offers an opportunity to discover if electrically induced muscle exercise regulates key pathways among people living with spinal cord injury (SCI). We examined short-term and long-term durations of electrically induced skeletal muscle exercise on complex gene signaling pathways, specific gene regulation, and epigenetic tagging of PGC1a, a major transcription factor in skeletal muscle of men with SCI. After short or long-term electrically induced exercise training, participants underwent biopsies of the trained and untrained muscles. RNA was hybridized to an exon microarray and analyzed using a gene set enrichment analysis. We discovered that long-term exercise training regulated the Reactome gene sets for Metabolism (38 gene sets), Cell Cycle (36 gene sets), Disease (27 gene sets), Gene Expression and Transcription (22 gene sets), Organelle Biogenesis (4 gene sets), Cellular Response to Stimuli (8 gene sets), Immune System (8 gene sets), Vesicle Mediated Transport (4 gene sets), and Transport of Small Molecules (3 gene sets). Specific gene expression included: Oxidative catabolism of glucose including PDHB (p<0.001), PDHX (p<0.001), MPC1 (p<0.009), and MPC2 (p<0.007); Oxidative phosphorylation genes including SDHA (p<0.006), SDHB (p<0.001), NDUFB1 (p<0.002), NDUFA2 (p<0.001); Transcription Genes including PGC1α (p<0.030) and PRKAB2 (p<0.011); Hypertrophy gene MSTN (p<0.001); and the Myokine generating FNDC5 gene (p<0.008). Long-term electrically induced exercise de-methylated the major transcription factor, PGC1a. Taken together, these findings support that long term electrically induced muscle activity regulates key pathways associated with muscle health and systemic metabolism.
Impact of short- and long-term electrically induced muscle exercise on gene signaling pathways, gene expression, and PGC1a methylation in men with spinal cord injury.
Sex, Specimen part, Disease
View SamplesInteraction of hematopoietic progenitors with the thymic stromal microenvironment induces them to proliferate, adopt the T cell fate, and asymmetrically diverge into multiple T lineages. Progenitors at various developmental stages are stratified among different regions of the thymus, implying that the corresponding microenvironments differ from one another, and provide unique sets of signals to progenitors migrating between them. The nature of these differences remains undefined. Here we use novel physical and computational approaches to characterize these stromal subregions, distinguishing gene expression in microdissected tissues from that of their lymphoid constituents. Using this approach, we comprehensively map gene expression in functionally distinct stromal microenvironments, and identify clusters of genes that define each region. Quite unexpectedly, we find that the central cortex lacks distinctive features of its own, and instead appears to function by sequestering unique microenvironments found at the cortical extremities, and modulating the relative proximity of progenitors moving between them.
Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation.
Specimen part
View SamplesNeutrophils play critical roles in modulating the immune response. However, neutrophils have a short circulating half life, are readily stimulated in vitro, and have low levels of cellular mRNA when compared to other blood leukocyte populations. All of these factors have made it difficult to evaluate neutrophils from clinical populations for molecular and functional studies.
Clinical microfluidics for neutrophil genomics and proteomics.
Specimen part, Subject
View SamplesWe used a novel approach to study the acute effect of three physiologic stressors (active contractions, vibration, and systemic heat stress) in human skeletal muscle. Three hours after the completion of a dose of physiologic stress, we sampled the soleus (contraction and vibration) or vastus lateralis (heat) muscle and developed a unique gene expression signature for each stressor. We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold change), PGC-1 (5.46 fold change), and ABRA (5.98 fold change); and repressed MSTN (0.56 fold change). Heat stress repressed PGC-1 (0.74 fold change); while vibration induced FOXK2 (2.36 fold change). Vibration similarly caused a down regulation of MSTN (0.74 fold change), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 while heat stress repressed PGC-1 (0.74 fold change) and ANKRD1 genes (0.51 fold change). These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.
Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.
Sex, Specimen part
View SamplesDifferential expression was used to access gene differences after Entamoeba histolytica infection.
The expression of REG 1A and REG 1B is increased during acute amebic colitis.
Specimen part
View SamplesHistone deacetylase 9 (HDAC9) is expressed in B cells, and its overexpression has been observed in B-lymphoproliferative disorders, including B-cell non-Hodgkin lymphoma (B-NHL). We examined HDAC9 protein expression and copy number alterations in primary B-NHL samples, identifying high HDAC9 expression among various lymphoma entities and HDAC9 copy number gains in 50% of diffuse large B-cell lymphoma (DLBCL). To study the role of HDAC9 in lymphomagenesis, we generated a genetically engineered mouse (GEM) model that constitutively expressed an HDAC9 transgene throughout B-cell development under the control of the immunoglobulin heavy chain (IgH) enhancer (E). Here, we report that the E-HDAC9 GEM model develops splenic marginal zone lymphoma and lymphoproliferative disease (LPD) with progression towards aggressive DLBCL, with gene expression profiling supporting a germinal center cell origin, as is also seen in human B-NHL tumors. Analysis of E-HDAC9 tumors suggested that HDAC9 might contribute to lymphomagenesis by altering pathways involved in growth and survival, as well as modulating BCL6 activity and p53 tumor suppressor function. Epigenetic modifications play an important role in the germinal center response, and deregulation of the B-cell epigenome as a consequence of mutations and other genomic aberrations are being increasingly recognized as important steps in the pathogenesis of a variety of B-cell lymphomas. A thorough mechanistic understanding of these alterations will inform the use of targeted therapies for these malignancies. These findings strongly suggest a role for HDAC9 in B-NHL and establish a novel GEM model for the study of lymphomagenesis and, potentially, preclinical testing of therapeutic approaches based on histone deacetylase inhibitors.
Deregulated expression of HDAC9 in B cells promotes development of lymphoproliferative disease and lymphoma in mice.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Deregulated expression of HDAC9 in B cells promotes development of lymphoproliferative disease and lymphoma in mice.
Specimen part
View SamplesThe molecular mechanisms of neurogenic fate determination are of particular importance in light of the need to regenerate neurons. However the molecular logic of neurogenic fate determination is still ill understood, even though some key transcription factors have been implicated. Here we describe how one of these, the transcription factor Pax6, regulates adult neurogenesis by initiating a cross-regulatory network of 3 transcription factors executing neuronal fate and regulating genes required for neuronal differentiation. This network is initiated and driven to sufficiently high expression levels by the transcription factor Pax6 in close interaction with Brg1-containing SWI/SNF chromatin remodeling factors.
The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network.
Sex, Age, Specimen part
View SamplesCancer cell motility and invasiveness are fundamental characteristics of the malignant phenotype and are regulated through diverse signaling networks involving kinases and transcription factors. In this study, we identify a nuclear hormone receptor (ER)-protein kinase (ERK5)-cofilin (CFL1) network that specifies the degree of breast cancer cell aggressiveness through coupling of actin reorganization and hormone receptor-mediated transcription. Using dominant negative and constitutively active forms, as well as small molecule inhibitors of ERK5 and MEK5, we show that hormone activation of estrogen receptor- determines the nuclear versus cytoplasmic localization of the MAPK family member ERK5, which functions as a coregulator of ER-gene transcription.
Novel roles for ERK5 and cofilin as critical mediators linking ERα-driven transcription, actin reorganization, and invasiveness in breast cancer.
Specimen part
View Samples