4 transiently expressed long non-coding RNAs that were identified in human and non-human primate cortical organoid differentiation were activated out of context in HEK293FT cells using CRISPRa. Overall design: 5 sgRNAs targeting TrEx lncRNAs or non-targeting controls were co-transfected with dCas9-VP64 into HEK293FT cells. Successfully transfected cells were selected by puromycin at 24 hours and harvested for RNA at maximal expression, 48 hours post transfection. RNA-seq libraries were prepared in biological triplicates with the NEXTflex Rapid Directional qRNA-Seq Library Prep Kit (PerkinElmer).
Structurally Conserved Primate LncRNAs Are Transiently Expressed during Human Cortical Differentiation and Influence Cell-Type-Specific Genes.
Cell line, Subject
View SamplesPrevious studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma.
Impact of ischemia and procurement conditions on gene expression in renal cell carcinoma.
Specimen part, Treatment, Subject
View SamplesTranscriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. Transcriptome sequencing revealed numerous novel long non-coding (lnc)RNAs and uncharacterized protein-coding transcripts identifying the signature of neurogenic commitment. Importantly, most lncRNAs overlapped neurogenic genes and shared with them a nearly identical expression pattern suggesting that lncRNAs control corticogenesis by tuning the expression of nearby cell fate determinants. We assessed the power of our approach by manipulating lncRNAs and protein-coding transcripts with no function in corticogenesis reported to date. This led to several evident phenotypes in neurogenic commitment and neuronal survival indicating that our study provides a remarkably high number of uncharacterized transcripts with hitherto unsuspected roles in brain development. Finally, we focussed on one lncRNA, Miat, whose manipulation was found to trigger pleiotropic effects on brain development and aberrant splicing of Wnt7b. Hence, our study suggests that lncRNA-mediated alternative splicing of cell fate determinants controls stem cell commitment during neurogenesis. “LncRNAs control neurogenesis” Aprea, Prenninger, Dori, Monasor, Wessendof, Zocher, Massalini, Ghosh, Alexopoulou, Lesche, Dahl, Groszer, Hiller, Calegari, The EMBO Journal (In Press) Overall design: mRNA profiles of Proliferating Progenitors, Differentiating Progenitors and Neurons from lateral cortex of E14.5 mouse embryos. Each cell type in three biological replicates.
Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNAs establish robustness and adaptability of a critical gene network to regulate progenitor fate decisions during cortical neurogenesis.
Specimen part
View SamplesDuring cortical development neurons are generated sequentially from basal progenitors (BPs) which specifically express the transcription factor Tbr2. We used fluorescent-activaed cell sorting (FACS) to isolate BPs from Tbr2GFP knockin reporter mice (Arnold SJ et al. Genesis, 2009) at early (embryonic day, E13) and late (embryonic day, E16) stages of cortical neurogenesis and determined mRNA expression profiles using mouse mRNA microarray (Illumina MouseWG-6 v2). Comparison of E13 and E16 mRNA expression profiles allowed us to identify regulatory gene networks for maintaining stage specific homeostasis of BPs throughout neurogenesis.
MicroRNAs establish robustness and adaptability of a critical gene network to regulate progenitor fate decisions during cortical neurogenesis.
Specimen part
View SamplesBACKGROUND: Streptococcus pneumoniae, the pneumococcus, is the main etiological agent of pneumonia. Pneumococcal infection is initiated by bacterial adherence to lung epithelial cells. The exact transcriptional changes occurring in both host and microbe during infection are unknown. Here, we developed a time-resolved infection model of human lung alveolar epithelial cells by S. pneumoniae and assess the resulting transcriptome changes in both organisms simultaneously by using dual RNA-seq. RESULTS: Functional analysis of the time-resolved dual RNA-seq data identifies several features of pneumococcal infection. For instance, we show that the glutathione-dependent reactive oxygen detoxification pathway in epithelial cells is activated by reactive oxygen species produced by S. pneumoniae. Addition of the antioxidant resveratrol during infection abates this response. At the same time, pneumococci activate the competence regulon during co-incubation with lung epithelial cells. By comparing transcriptional changes between wild-type encapsulated and mutant unencapsulated pneumococci, we demonstrate that adherent pneumococci, but not free-floating bacteria, repress innate immune responses in epithelial cells including expression of the chemokine IL-8 and the production of antimicrobial peptides. We also show that pneumococci activate several sugar transporters in response to adherence to epithelial cells and demonstrate that this activation depends on host-derived mucins. CONCLUSIONS: We provide a dual-transcriptomics overview of early pneumococcal infection in a time-resolved manner, providing new insights into host-microbe interactions. To allow easy access to the data by the community, a web-based platform was developed ( http://dualrnaseq.molgenrug.nl ). Further database exploration may expand our understanding of epithelial-pneumococcal interaction, leading to novel antimicrobial strategies. Overall design: 5 time points are analysed (0, 30, 60, 120 and 240 minutes after infection). Each time point has two biological replicates except for the 240 mpi. Furthermore, each time point has two pneumococcal strains used to infect A549 cells, encapsulated and unencapsulated pneumococci. In total there are 18 samples. cellular infection model, contains rRNA-depleted total RNA from A549 epithelial cells and D39 S. pneumoniae
Time-resolved dual RNA-seq reveals extensive rewiring of lung epithelial and pneumococcal transcriptomes during early infection.
Specimen part, Cell line, Subject
View SamplesB cells provide humoral immunity by differentiating into antibody secreting plasma cells. Differentiation is dependent upon division and transcriptional changes, with commitment to B cell lineages associated with epigenetic changes. Analysis of early transcriptional and epigenetic events in B cell differentiation revealed that plasmablasts and plasma cells undergo dynamic changes in gene expression and a progressive DNA hypomethylation targeted to at least 10% of genes/loci. Of the differentially methylated loci, more than 99.7% were demethylated during differentiation and these clustered in cis-regulatory features such as enhancers and transcription factor binding sites. Changes in gene expression and DNA methylation coincided with each other at specific divisions during differentiation and inhibition of DNA methylation resulted in augmented plasma cell commitment in a division-dependent manner. These data identify a major epigenetic reprogramming event during early B cell differentiation coupled division and provide an approach to modulating humoral immune responses. Overall design: Splenic B cells (B220+ CD43-) from naïve C57/BL6J mice were labeled with CFSE or CTV and transferred into uMT mice and allowed to rest overnight prior to challenge with LPS. Three days post challenge adoptively transferred B cells representing distinct divisions were sorted out for molecular analysis. These divisions are labelled Div0, Div1, Div3, Div5, Div8- and Div8+. Division 8- refers to cells that divided at least 8 times but were CD138-, whereas Division 8+ refers to cells that divided at least 8 times but were CD138+. Cells were subjected to RNA-seq and Reduced Representation Bisulfite Sequencing.
Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation.
Sex, Age, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation.
Sex, Age, Specimen part
View SamplesB cells provide humoral immunity by differentiating into antibody secreting plasma cells. Differentiation is dependent upon division and transcriptional changes, with commitment to B cell lineages associated with epigenetic changes. Analysis of early transcriptional and epigenetic events in B cell differentiation revealed that plasmablasts and plasma cells undergo dynamic changes in gene expression and a progressive DNA hypomethylation targeted to at least 10% of genes/loci. Of the differentially methylated loci, more than 99.7% were demethylated during differentiation and these clustered in cis-regulatory features such as enhancers and transcription factor binding sites. Changes in gene expression and DNA methylation coincided with each other at specific divisions during differentiation and inhibition of DNA methylation resulted in augmented plasma cell commitment in a division-dependent manner. These data identify a major epigenetic reprogramming event during early B cell differentiation coupled division and provide an approach to modulating humoral immune responses.
Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation.
Sex, Age, Specimen part
View SamplesTo understand the role of Ezh2 in B cell differentiation B cells were stimulated ex vivo with LPS, Il2, and Il5 in the presence of DMSO or the selective Ezh2 inhibitor GSK343. Following 3 days culture, activated B cells and Plasmablasts were FACS isolated and RNA-seq was performed to identify the molecular effects of Ezh2 inhibition on B cell subsets during differentiation. Overall design: RNAseq on ex vivo differentiated B cell subsets treated with GSK343 or DMSO
Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs.
Sex, Specimen part, Cell line, Treatment, Subject
View Samples