refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 179 results
Sort by

Filters

Technology

Platform

accession-icon GSE45437
Expression data from paediatric ependymoma short-term cell cultures
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Promoter hypermethylation and transcriptional silencing is a common epigenetic mechanism of tumour suppressor inactivation in cancer, including malignant brain tumours.

Publication Title

Epigenetic genome-wide analysis identifies BEX1 as a candidate tumour suppressor gene in paediatric intracranial ependymoma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE31652
IL-17A is an essential cytokine to sustain pathogenic cell activation and inflammatory gene circuits in psoriasis vulgaris
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

In psoriasis, inflammation and epidermal hyperplasia are thought to be controlled by T cell-derived cytokines. Evidence now suggests that Th17 and Th22 cells infiltrate psoriasis lesions and by secreting IL-17 and IL-22, respectively, may drive disease-specific gene or cell responses. While studies in model systems indicate that IL-22 has a dominant pathogenic role, there is evolving evidence that IL-17 contributes to features of psoriasis. To more fully understand the role of IL-17 in human disease pathogenesis, we examined psoriatic skin lesions obtained from patients treated with an anti-IL-17 (IL-17 A) monoclonal antibody, LY2439821. In a phase 1, randomized, double-blind, placebo-controlled dose escalation trial, patients with chronic psoriasis were randomized to receive 3 doses of subcutaneous LY2439821 at 5 mg (n=8), 15 mg (n=8), 50 mg (n=8), 150 mg (n=8) or placebo (n=8) at weeks 0, 2 and 4. Repeat biopsies were taken from the same lesional area at baseline, week 2 and 6. At week 6, a PASI75 was observed in 0/8, 2/8, 5/7 and 8/8 patients receiving 5 mg, 15 mg, 50 mg or 150 mg LY2439821 respectively and 0/8 patients receiving placebo. The antibody was well-tolerated. In patients receiving the two highest doses, histological and immunohistochemical analyses of biopsies revealed significant reductions from baseline in keratinocyte proliferation, hyperplasia and epidermal thickness after 2 weeks, as well as reduced infiltration into the dermis and epidermis by T-cells (CD3+) and dendritic cells (CD11c and DC-LAMP). Keratinocyte expression of innate defense proteins, S100A7, S100A8, beta-defensin2 and LL37/cathelicidin was also reduced. By week 6, the skin appeared normal with a reversal of disease defining pathological features. Quantitative RT-PCR revealed decreased expression of interferon gamma (IFN-gamma), IL-22 and IL-17, key cytokines from T cell subsets Th1, Th22 and Th17, respectively. In order to explore the extent to which IL-17 blockade influences an even broader set of inflammatory or psoriatic disease related genes, mRNA levels from skin biopsy samples were evaluated using whole genome microarrays. At week 2, the highest dose of LY2439821 modulated over 1500 genes significantly (>1.5 fold change [FC], p<0.05). Of these, 51 genes were strongly suppressed (>7-fold) including IL-19, lipocalin, amphiregulin, granzyme B, and several chemokines. In a separate analysis, those genes known to be synergistically regulated by both IL-17 and TNF-alpha showed the greatest normalization in expression compared to genes known to be regulated by TNF-alpha alone, IFN-gamma or Interferon alpha. Our data suggest that Th17 cells, through the expression of IL-17, mediate psoriasis pathogenesis, and that neutralization of IL-17 with LY2439821 suppresses signaling through multiple inflammatory circuits by inhibiting expression of cytokines from multiple T cell subsets, as well as chemokines, and antimicrobial proteins from keratinocytes.

Publication Title

IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE41106
Expression data after irradiating mMSCs
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6769
Expression data from Pseudomonas aeruginosa (wild type and lasRrhlR mutant strains) exposed to human neutrophils
  • organism-icon Pseudomonas aeruginosa pao1, Pseudomonas aeruginosa
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

In the present in vitro study, interactions between P. aeruginosa (sessile biofilms as well as planktonic cells) and PMNs were analyzed by means of DNA microarray based transcriptomics. We found that the P. aeruginosa wild type biofilms, in contrast to planktonic cultures and quorum sensing (QS) deficient strains, respond to PMN exposure in a rather aggressive manner. The response does not involve protective mechanisms such as those involved in oxidative stress. Rather it is dominated by QS controlled virulence determinants such as those encoded by pqs, phz, rhlAB, all of which are designed to cripple Eukaryotic cells including PMNs and macrophages. Our comparative analysis supports the view that QS plays a major role in mechanisms by which P. aeruginosa evades host defense systems.

Publication Title

Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41083
Expression data after irradiating mMSCs for 2 hours with broadband terahertz source
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

Publication Title

Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41084
Expression data after irradiating mMSCs for 12 hours with broadband terahertz source
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

Publication Title

Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41085
Expression data after irradiating mMSCs for 2 hours with single frequency terahertz laser source
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

Publication Title

Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23888
Mammalian stem cells respond to terahertz radiation with changes in gene expression
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We report that extended exposure to broad-spectrum terahertz radiation results in specific changes in cellular functions that are closely related to DNA-directed gene transcription. Our gene chip survey of gene expression shows that whereas 89% of the protein coding genes in mouse stem cells do not respond to the applied teraherz radiation, certain genes are activated, while other are repressed. RT-PCR experiments with selected gene probes corresponding to transcripts in the three groups of genes detail the gene specific effect. The response was not only gene specific but also irradiation conditions dependent. Our findings suggest that the applied terahertz irradiation accelerates cell differentiation toward adipose phenotype by activating the transcription factor peroxisome proliferator-activated receptor gamma (PPARG). Finally, our molecular dynamics computer simulations indicate that the local breathing dynamics of the PPARG promoter DNA coincides with the gene specific response to the THz radiation. We propose that THz radiation is a potential tool for cellular reprogramming.

Publication Title

Mammalian stem cells reprogramming in response to terahertz radiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP033416
Pax5 restoration in a mouse model of B progenitor acute lymphoblastic leukemia
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Hypomorphic mutations of PAX5 occur in one third of B-progenitor acute lymphoblastic leukemias (B-ALLs), however their functional consequences remain undefined. Here we employ advanced transgenic RNAi in mice to suppress endogenous Pax5 expression in the hematopoietic compartment in vivo, which co-operates with activated STAT5 to induce B-ALL. In this model, restoring endogenous Pax5 expression in established B-ALL induces transcriptional and immunophenotypic changes reminiscent of normal B cell differentiation, disabling leukemia-initiating capacity and ultimately causing leukemia clearance. Overall design: Comparison of leukemias harvested from triplicate untreated mice versus triplicate Dox-treated (3 days) mice

Publication Title

limma powers differential expression analyses for RNA-sequencing and microarray studies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP135973
Human iPSC-derived glomeruli provide an advanced model to interrogate podocyte biology and accurately recapitulate podocytopathy
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Podocytes are highly specialised cells within the glomeruli of the kidney that maintain the filtration barrier by forming interdigitating foot processes and slit-diaphragms. Disruption to these features result in proteinuria and glomerulosclerosis. Studies into podocyte biology and disease have previously relied on conditionally immortalised cell lines due to the non- proliferative nature of this cell type. Here we describe an advanced model to study both podocyte and glomerular biology using isolated glomeruli from kidney organoids derived from human pluripotent stem cells. Overall design: Gene expression profiling of day three 17, 21 and 26 day kidney organoid derived glomeruli respectively with heterzygous genotype for BFP tagged MAFB; gene expression profiling of three day 25 kidney organoid derived glomeruli; gene expression profiling of three organoid-derived podocytes grown out for 3 days from day 25 kidney organoid derived glomeruli.

Publication Title

3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact