Insulin action in adipocytes affects whole-body insulin sensitivity. Studies of adipose-specific Glut4 knockout mice have established that adipose Glut4 contributes to the control of systemic glucose homeostasis. Presumably, this reflects a role for Glut4-mediated glucose transport in the regulation of secreted adipokines. In cultured 3T3-L1 adipocytes, Rab10 GTPase is required for insulin-stimulated translocation of Glut4 (Sano et al., 2007). The physiological importance of adipose Rab10 and the significance of its role in the control of Glut4 vesicle trafficking in vivo are unknown. Here we report that adipocytes from adipose-specific Rab10 knockout mice have a ~50% reduction in glucose uptake and Glut4 translocation to the cell surface in response to insulin, demonstrating a role for Rab10 in Glut4 trafficking. Moreover, hyperinsulinemic-euglycemic clamp shows decreased whole-body glucose uptake as well as impaired suppression of hepatic glucose production in adipose Rab10 knockout mice. Thus, fully functional Glut4 vesicle trafficking in adipocytes is critical for maintaining insulin sensitivity. Comparative transcriptome analysis of perigonadal adipose tissue demonstrates significant transcriptional similarities between adipose Rab10 knockout mice and adipose Glut4 knockout mice, consistent with the notion that the phenotypic similarities between the two models are mediated by reduced insulin-stimulated glucose transport into adipocytes. Overall design: Transcriptome sequencing of perigonadal white adipose tissue
Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance.
No sample metadata fields
View SamplesMicroarray analysis was performed to determine the transcriptional profiles of NKT, CD1d-aGC+ Va24-, and CD4 T cells.
A naive-like population of human CD1d-restricted T cells expressing intermediate levels of promyelocytic leukemia zinc finger.
Specimen part
View SamplesGene expression analyses were carried out to identify genes regulated by 17-beta estradiol (E2) and Hydroxytamoxifen (OHT) through GPR30 in SKBR3 cells, a breast cancer cell-line which expresses GPR30 but lacks Estrogen Receptor alpha or beta.
Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF.
No sample metadata fields
View SamplesPKR is an interferon induced serine/threonine protein kinase, that is activated by double stranded RNA. PKR plays an important role in the antiviral defense by interferon. In addition to its role in translation, PKR participates in several signaling pathways to transcription. The goal of this experiment is to study the role of PKR in regulating gene expression in our NIH 3T3 inducible cell line, which could overexpress PKR wt protein after the removal of tetracycline (Donze O, Dostie J, Sonenberg N. (1999) Virology 256: 322-9).
The protein kinase PKR: a molecular clock that sequentially activates survival and death programs.
Cell line
View SamplesJQ1 is a small-molecule (BET family) bromodomain inhibitor that causes a contraceptive effect in mice by blocking spermatogenesis and reducing sperm motility.
Small-molecule inhibition of BRDT for male contraception.
Sex, Specimen part
View SamplesThe counterregulatory response to hypoglycemia, which restores normal blood glucose levels to ensure sufficient provision of glucose to the brain, is critical for survival. To discover underlying brain regulatory systems, we performed a genetic screen in recombinant inbred mice for quantitative trait loci (QTL) controlling glucagon secretion in response to neuroglucopenia. We identified a QTL on the distal part of chromosome 7 and combined this genetic information with transcriptomic analysis of hypothalami. This revealed Fgf15 as the strongest candidate to control the glucagon response. Fgf15 was found to be expressed by neurons of the dorsomedial hypothalamus and the perifornical area. Intracerebroventricular injection of FGF19, the human ortholog of Fgf15, reduced activation by neuroglucopenia of dorsal vagal complex neurons and of the parasympathetic nerve, leading to a lower glucagon secretion. These data show that Fgf15 in hypothalamic neurons is a regulator of vagal nerve activity in response to neuroglucopenia. Overall design: 36 BXD strains + 4 parental strains, 1 time point, basal condition without treatment
A Genetic Screen Identifies Hypothalamic Fgf15 as a Regulator of Glucagon Secretion.
Specimen part, Cell line, Subject
View SamplesRod-derived Cone Viability Factor (RdCVF, alias nxnl1) is a retina-specific protein identified for its therapeutic potential in supporting cone survival during retinal degeneration.
The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress.
Disease, Disease stage
View SamplesWe developed an affinity purification approach to isolate tagged nuclei in mice (similar to INTACT; [Deal R.B. and Henikoff S. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18,1030-1040. (2010)]) and used it to characterize genome-wide patterns of transcription, DNA methylation, and chromatin accessibility in 3 major neuron classes of the neocortex (excitatory pyramidal neurons, parvalbumin (PV)-positive GABAergic interneurons, and vasoactive intestinal peptide (VIP)-positive GABAergic interneurons). By combining cell purification and integrative analysis, our findings relate the phenotypic and functional complexity of neocortical neurons to their underlying transcriptional and epigenetic diversity. Overall design: RNA-seq, MethylC-seq, ATAC-seq, and ChIP-seq for histone modifications using INTACT-purified nuclei from the mouse neocortex
Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain.
No sample metadata fields
View SamplesIn this study we performed a genome wide analysis of the entire complement of mRNAs in clear cell renal cell carcinomas (ccRCC) by means of the Affymetrix Exon Array platform. The analyses were performed both at gene and exon level.
Genome-wide analysis of differentially expressed genes and splicing isoforms in clear cell renal cell carcinoma.
Sex, Age, Specimen part, Subject
View SamplesNeuronal diversity is a defining feature of the mammalian brain deemed necessary for realizing the complex function of the nervous system. In order to begin to understand the transcriptional basis of this diversity, we collected more than 170 neuronal and non-neuronal cell type-specific transcriptomes defined operationally by transgenic mouse lines and anatomical regions. The dataset indicates that the genes specifically expressed in neuronal cell types are biased toward long genes. We revealed that these long genes have higher capacities to be differentially expressed between cell types and thus assume an important role in diversification of the neuronal transcriptomes. Since mobile element insertions are the main cause of the gene elongations, we propose that exaptation of the inserted mobile elements significantly contributed to the neuronal diversity. Overall design: Examination of whole cell transcriptomes in 174 cell types.
Mapping the transcriptional diversity of genetically and anatomically defined cell populations in the mouse brain.
Sex, Specimen part, Cell line, Subject
View Samples