refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 234 results
Sort by

Filters

Technology

Platform

accession-icon GSE37894
Testis Gene Expression Changes after JQ1 treatment
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

JQ1 is a small-molecule (BET family) bromodomain inhibitor that causes a contraceptive effect in mice by blocking spermatogenesis and reducing sperm motility.

Publication Title

Small-molecule inhibition of BRDT for male contraception.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE13869
Transcriptome of the Nxnl1-/- mouse retina
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Rod-derived Cone Viability Factor (RdCVF, alias nxnl1) is a retina-specific protein identified for its therapeutic potential in supporting cone survival during retinal degeneration.

Publication Title

The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE51143
Effect of BET inhibitors (JQ1 and RVX-208) on gene expression in HepG2 cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Bromodomains have emerged as attractive candidates for the development of inhibitors targeting gene transcription. Inhibitors of the bromo-and-extra-terminal (BET) family recently showed promising activity in diverse disease models. However, the pleiotropic nature of BET proteins regulating tissue specific transcription has raised safety concerns and suggested that attempts should be made for domain-specific targeting. Here we report that RVX-208, a compound currently in phase II clinical trials, is a BET bromodomain inhibitor specific for second bromodomains (BD2). Co-crystal structures revealed binding modes of RVX-208 and its synthetic precursor and fluorescent recovery after photobleaching demonstrated that RVX-208 displaces BET proteins from chromatin. However, gene expression data showed that BD2 inhibition only modestly affects BET-dependent gene transcription. Our data demonstrate the feasibility of specific targeting within the BET family resulting in different transcriptional outcomes and highlight the importance of BD1 in transcriptional regulation

Publication Title

RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE22338
Expression data from cones in degenerated retinas from C3H/HeNCrl (Pde6brd1) mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used FACS isolated RD cone photoreceptors from C3H mice (we refer this mouse model as f-RD) that were transfected by AAVs to express fluorescent reporters to genomic analyses. We tested three different ages.

Publication Title

Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE78830
Promiscuous targeting of bromodomains by Bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia
  • organism-icon Homo sapiens
  • sample-icon 75 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE78829
Promiscuous targeting of bromodomains by Bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia [set2]
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Bromodomains (BRDs) have emerged as compelling targets for cancer therapy. The development of selective and potent BET inhibitors and their significant activity in diverse tumor models has rapidly translated into clinical studies and has motivated drug development efforts targeting non-BET BRDs. However, the complex multidomain/subunit architecture of bromodomain protein complexes complicates predictions of consequences of their pharmacological targeting. To address this issue we developed a promiscuous bromodomain inhibitor (bromosporine, BSP) that broadly targets BRDs (including BETs) with nanomolar affinity, creating a tool for the identification of cellular processes and diseases where BRDs have a regulatory function. As a proof of principle we studied the effect of BSP in leukemic cell-lines known to be sensitive to BET inhibition and found as expected strong anti-proliferative activity. Comparison of the modulation of transcriptional profiles by BSP at short inhibitor exposure resulted in a BET inhibitor signature but no significant additional changes in transcription that could account for inhibition of other BRDs. Thus, non-selective targeting of BRDs identified BETs, but not other BRDs, as master regulators of a context dependent primary transcription response.

Publication Title

Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE78827
Promiscuous targeting of bromodomains by Bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia [set 1]
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Bromodomains (BRDs) have emerged as compelling targets for cancer therapy. The development of selective and potent BET inhibitors and their significant activity in diverse tumor models has rapidly translated into clinical studies and has motivated drug development efforts targeting non-BET BRDs. However, the complex multidomain/subunit architecture of bromodomain protein complexes complicates predictions of consequences of their pharmacological targeting. To address this issue we developed a promiscuous bromodomain inhibitor (bromosporine, BSP) that broadly targets BRDs (including BETs) with nanomolar affinity, creating a tool for the identification of cellular processes and diseases where BRDs have a regulatory function. As a proof of principle we studied the effect of BSP in leukemic cell-lines known to be sensitive to BET inhibition and found as expected strong anti-proliferative activity. Comparison of the modulation of transcriptional profiles by BSP at short inhibitor exposure resulted in a BET inhibitor signature but no significant additional changes in transcription that could account for inhibition of other BRDs. Thus, non-selective targeting of BRDs identified BETs, but not other BRDs, as master regulators of a context dependent primary transcription response.

Publication Title

Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE28726
NKT, CD1d-aGC+ Va24-, and CD4 T cell clones from human peripheral blood
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarray analysis was performed to determine the transcriptional profiles of NKT, CD1d-aGC+ Va24-, and CD4 T cells.

Publication Title

A naive-like population of human CD1d-restricted T cells expressing intermediate levels of promyelocytic leukemia zinc finger.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11567
GPR30-mediated estrogen signaling in Estrogen Receptor alpha and beta negative SKBR3 breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

Gene expression analyses were carried out to identify genes regulated by 17-beta estradiol (E2) and Hydroxytamoxifen (OHT) through GPR30 in SKBR3 cells, a breast cancer cell-line which expresses GPR30 but lacks Estrogen Receptor alpha or beta.

Publication Title

Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-50
Transcription profiling of human NIH 3T3 inducible cell line to study the role of PKR in regulating gene expression
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine 11K SubB Array (mu11ksubb), Affymetrix Murine 11K SubA Array (mu11ksuba)

Description

PKR is an interferon induced serine/threonine protein kinase, that is activated by double stranded RNA. PKR plays an important role in the antiviral defense by interferon. In addition to its role in translation, PKR participates in several signaling pathways to transcription. The goal of this experiment is to study the role of PKR in regulating gene expression in our NIH 3T3 inducible cell line, which could overexpress PKR wt protein after the removal of tetracycline (Donze O, Dostie J, Sonenberg N. (1999) Virology 256: 322-9).

Publication Title

The protein kinase PKR: a molecular clock that sequentially activates survival and death programs.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact